Abstract

Quantum dots are finding increasing commercial success in LED applications. While they have been used for several years in remote off-chip architectures for display applications, it is shown for the first time to our knowledge that quantum dots can withstand the demands of the on-chip architecture and therefore are capable of being used as a direct phosphor replacement in both lighting and display applications. It is well known that, to achieve improved color metrics in lighting as well as increased gamut in display technologies, it is highly desirable to utilize a downconverter with a narrow emission linewidth as well as a precisely tunable peak. This paper will discuss the results of on-chip use of quantum dots in a lighting product, and explore the opportunities and practical limits for improvement of various lighting and display metrics by use of this unique downconverter technology.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays

Juan He, Haiwei Chen, Hao Chen, Yanan Wang, Shin-Tson Wu, and Yajie Dong
Opt. Express 25(11) 12915-12925 (2017)

Realizing Rec. 2020 color gamut with quantum dot displays

Ruidong Zhu, Zhenyue Luo, Haiwei Chen, Yajie Dong, and Shin-Tson Wu
Opt. Express 23(18) 23680-23693 (2015)

K2SiF6:Mn4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives

Heleen F. Sijbom, Reinert Verstraete, Jonas J. Joos, Dirk Poelman, and Philippe F. Smet
Opt. Mater. Express 7(9) 3332-3365 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
    [Crossref]
  2. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
    [Crossref]
  3. N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).
  4. K. T. Shimizu, M. Böhmer, D. Estrada, S. Gangwal, S. Grabowski, H. Bechtel, E. Kang, K. Vampola, D. Chamberlin, O. B. Shchekin, and J. Bhardwaj, “Towards commercial realization of quantum dot based white LEDs for general illumination,” Photon. Res. 5, A1–A6 (2017).
  5. J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
    [Crossref]
  6. A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112, 6775–6780 (2008).
    [Crossref]
  7. M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
    [Crossref]
  8. S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
    [Crossref]
  9. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
    [Crossref]
  10. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
    [Crossref]
  11. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [Crossref]
  12. B. D. Mangum, Y. Ghosh, J. A. Hollingsworth, and H. Htoon, “Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments,” Opt. Express 21, 7419–7426 (2013).
    [Crossref]
  13. G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano. Lett. 11, 1136–1140 (2011).
    [Crossref]
  14. S. A. Empedocles and M. G. Bawendi, “Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots,” Science 278, 2114–2117 (1997).
    [Crossref]
  15. R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
    [Crossref]
  16. Nichia Product Page NF2L757G-V1F1, http://www.nichia.co.jp/en/ , (2016).
  17. T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express 18, 340–347 (2010).
    [Crossref]
  18. P. Zhong, G. He, and M. Zhang, “Optimal spectra of white light-emitting diodes using quantum dot nanophosphors,” Opt. Express 20, 9122–9134 (2012).
    [Crossref]
  19. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
    [Crossref]
  20. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
    [Crossref]
  21. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 033602 (2010).
    [Crossref]
  22. W. Davis and Y. Ohno, “Toward an improved color rendering metric,” Proc. SPIE 5941, 59411G (2005).
  23. Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10, 526–539 (2014).
    [Crossref]
  24. J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
    [Crossref]
  25. K. Masaoka and Y. Nishida, “Metric of color-space coverage for wide-gamut displays,” Opt. Express 23, 7802–7808 (2015).
    [Crossref]
  26. R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23, 23680–23693 (2015).
    [Crossref]
  27. Samsung TV Blog, http://www.samsung.com/global/tv/blog/why-are-quantum-dot-displays-so-good.html , (2016).
  28. Wide Color Gamut Coverage of TVs, http://www.rtings.com/tv/tests/picture-quality/widecolor-gamut-rec-709-dci-p3-rec-2020 , (2016).
  29. J. Ho, “Achieving BT. 2020 color gamut quantum dots vs. lasers,” presented at the March 2016 Bay Area Society for Information Display Conference, March24, 2016.

2017 (1)

2016 (2)

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[Crossref]

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
[Crossref]

2015 (4)

S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
[Crossref]

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

K. Masaoka and Y. Nishida, “Metric of color-space coverage for wide-gamut displays,” Opt. Express 23, 7802–7808 (2015).
[Crossref]

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23, 23680–23693 (2015).
[Crossref]

2014 (2)

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10, 526–539 (2014).
[Crossref]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

2013 (2)

M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
[Crossref]

B. D. Mangum, Y. Ghosh, J. A. Hollingsworth, and H. Htoon, “Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments,” Opt. Express 21, 7419–7426 (2013).
[Crossref]

2012 (1)

2011 (1)

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano. Lett. 11, 1136–1140 (2011).
[Crossref]

2010 (2)

2008 (1)

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112, 6775–6780 (2008).
[Crossref]

2005 (2)

W. Davis and Y. Ohno, “Toward an improved color rendering metric,” Proc. SPIE 5941, 59411G (2005).

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
[Crossref]

2000 (2)

R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
[Crossref]

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

1997 (2)

S. A. Empedocles and M. G. Bawendi, “Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots,” Science 278, 2114–2117 (1997).
[Crossref]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

1994 (1)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Alivisatos, A. P.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Allen, P.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Anc, M. J.

M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
[Crossref]

Bardsley, N.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Bawendi, M. G.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano. Lett. 11, 1136–1140 (2011).
[Crossref]

R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
[Crossref]

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

S. A. Empedocles and M. G. Bawendi, “Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots,” Science 278, 2114–2117 (1997).
[Crossref]

Bechtel, H.

Bhardwaj, J.

Bland, S.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Böhmer, M.

Breen, C.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Chamberlin, D.

Chen, H.

Coe-Sullivan, S.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Colvin, V. L.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 033602 (2010).
[Crossref]

W. Davis and Y. Ohno, “Toward an improved color rendering metric,” Proc. SPIE 5941, 59411G (2005).

Demir, H. V.

Do, Y. R.

S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
[Crossref]

Dong, Y.

Empedocles, S. A.

R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
[Crossref]

S. A. Empedocles and M. G. Bawendi, “Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots,” Science 278, 2114–2117 (1997).
[Crossref]

Erdem, T.

Estrada, D.

Feiner, L. F.

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112, 6775–6780 (2008).
[Crossref]

Gangwal, S.

Ghosh, Y.

Grabowski, S.

Gresty, N. C.

M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
[Crossref]

Hamilton, C.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Hansen, M.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Harris, J. A.

M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
[Crossref]

He, G.

Hecht, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Heine, J. R.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Henß, A.-K.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Hermans, Y.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
[Crossref]

Ho, J.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

J. Ho, “Achieving BT. 2020 color gamut quantum dots vs. lasers,” presented at the March 2016 Bay Area Society for Information Display Conference, March24, 2016.

Hollingsworth, J. A.

Htoon, H.

Jensen, K. F.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Jeong, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
[Crossref]

Kang, E.

Kim, S.

S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
[Crossref]

Kim, S.-W.

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[Crossref]

Lee, J.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Lee, J.-J.

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[Crossref]

Lincheneau, C.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
[Crossref]

Liu, W.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Luo, Z.

Mangum, B. D.

Masaoka, K.

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Mishra, K. C.

M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
[Crossref]

Nair, G.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano. Lett. 11, 1136–1140 (2011).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112, 6775–6780 (2008).
[Crossref]

Neuhauser, R. G.

R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
[Crossref]

Nishida, Y.

Nizamoglu, S.

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Oh, J. H.

S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
[Crossref]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 033602 (2010).
[Crossref]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
[Crossref]

W. Davis and Y. Ohno, “Toward an improved color rendering metric,” Proc. SPIE 5941, 59411G (2005).

Park, J. P.

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[Crossref]

Pattison, L.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Pattison, M.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Pickett, N. L.

M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
[Crossref]

Pust, P.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Reiss, P.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
[Crossref]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Scheu, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Schlamp, M. C.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Schmidt, P. J.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Schnick, W.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Shchekin, O. B.

Shimizu, K. T.

K. T. Shimizu, M. Böhmer, D. Estrada, S. Gangwal, S. Grabowski, H. Bechtel, E. Kang, K. Vampola, D. Chamberlin, O. B. Shchekin, and J. Bhardwaj, “Towards commercial realization of quantum dot based white LEDs for general illumination,” Photon. Res. 5, A1–A6 (2017).

R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
[Crossref]

Steckel, J. S.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Stober, K.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Sun, X. W.

Sundar, V. C.

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Tamang, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
[Crossref]

Tücks, A.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Vampola, K.

van der Zaag, P. J.

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112, 6775–6780 (2008).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Weiler, V.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Wiechert, D.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Wochnik, A. S.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Woo, W. K.

R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
[Crossref]

Wu, S. T.

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10, 526–539 (2014).
[Crossref]

Wu, S.-T.

Xi, J.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Xu, D.

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10, 526–539 (2014).
[Crossref]

Yamada, M.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Yang, H.

S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
[Crossref]

Yang, S. J.

S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
[Crossref]

Zhang, M.

Zhao, J.

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano. Lett. 11, 1136–1140 (2011).
[Crossref]

Zhong, P.

Zhu, R.

Adv. Mater. (1)

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full color emission from iivi semiconductor quantum dot–polymer composites,” Adv. Mater. 12, 1102–1105 (2000).
[Crossref]

Chem. Mater. (1)

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28, 2491–2506 (2016).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

M. J. Anc, N. L. Pickett, N. C. Gresty, J. A. Harris, and K. C. Mishra, “Progress in non-Cd quantum dot development for lighting applications,” ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).
[Crossref]

J. Disp. Technol. (1)

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Disp. Technol. 10, 526–539 (2014).
[Crossref]

J. Mater. Chem. C (1)

S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, “Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs,” J. Mater. Chem. C 3, 3582–3591 (2015).
[Crossref]

J. Phys. Chem. B (1)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

J. Phys. Chem. C (1)

A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C 112, 6775–6780 (2008).
[Crossref]

J. Soc. Inf. Disp. (1)

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” J. Soc. Inf. Disp. 23, 294–305 (2015).
[Crossref]

Nano. Lett. (1)

G. Nair, J. Zhao, and M. G. Bawendi, “Biexciton quantum yield of single semiconductor nanocrystals from photon statistics,” Nano. Lett. 11, 1136–1140 (2011).
[Crossref]

Nat. Mater. (1)

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13, 891–896 (2014).
[Crossref]

Nature (1)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Opt. Eng. (2)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 033602 (2010).
[Crossref]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005).
[Crossref]

Opt. Express (5)

Photon. Res. (1)

Phys. Rev. Lett. (1)

R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, “Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots,” Phys. Rev. Lett. 85, 3301–3304 (2000).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Proc. SPIE (1)

W. Davis and Y. Ohno, “Toward an improved color rendering metric,” Proc. SPIE 5941, 59411G (2005).

Sci. Rep. (1)

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[Crossref]

Science (1)

S. A. Empedocles and M. G. Bawendi, “Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots,” Science 278, 2114–2117 (1997).
[Crossref]

Other (5)

Nichia Product Page NF2L757G-V1F1, http://www.nichia.co.jp/en/ , (2016).

Samsung TV Blog, http://www.samsung.com/global/tv/blog/why-are-quantum-dot-displays-so-good.html , (2016).

Wide Color Gamut Coverage of TVs, http://www.rtings.com/tv/tests/picture-quality/widecolor-gamut-rec-709-dci-p3-rec-2020 , (2016).

J. Ho, “Achieving BT. 2020 color gamut quantum dots vs. lasers,” presented at the March 2016 Bay Area Society for Information Display Conference, March24, 2016.

N. Bardsley, S. Bland, M. Hansen, L. Pattison, M. Pattison, K. Stober, and M. Yamada, “Solid-state lighting R&D plan,” Technical Report (U.S. Department of Energy, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. QD absorption and emission spectra for an ensemble of QDs diluted in cyclohexane. These QDs have been engineered to minimize self-absorption, i.e., emission and absorption spectra have minimal overlap. Note that the peak emission has been normalized to the absorption at 450 nm.
Fig. 2.
Fig. 2. Data obtained from Lumileds showing the high temperature operating lifetime (HTOL) of white QD-converted LEDs. LED lighting packages (3535) are aged at a drive current of 200 mA at 95°C. The color maintenance specification set by the DOE Energy Star program is identified with a dashed line.
Fig. 3.
Fig. 3. Single-particle optical characteristics compared to ensemble. Top Graph: ensemble absorption HWHM of the first exciton peak for CdSe cores. Experimental batches represent attempts to achieve a narrower size distribution of QD cores. Middle Graph: FWHM comparison; single particles (solid bars) range from 7 to 15 nm narrower than ensemble (dashed bars). Bottom Graph: centroid comparison; single particles (solid bars) are typically within a few nm of ensemble measurements in solution (dashed bars), though there exist samples with large discrepancies.
Fig. 4.
Fig. 4. Confirmed single-QD measurements from Production Batch 1 (n=48). Top Graph: overlaid spectra showing wide range of center wavelengths and intensities. Middle Left: FWHM versus centroid; the linear fit indicates little to no relationship. Middle Right: histogram of FWHM measurements. Bottom Left: lifetime versus FWHM; the linear fit shows a strong correlation. Bottom Right: histogram of lifetime measurements.
Fig. 5.
Fig. 5. Confirmed single-QD measurements from Experimental Batch 2 (n=40). Top Graph: overlaid spectra showing wide range of center wavelengths and intensities. Middle Left: FWHM versus centroid; the linear fit indicates a strong relationship between the two. The range of FWHM values is greater than the Production Batch. Middle Right: histogram of FWHM measurements. Bottom Left: lifetime versus FWHM; the linear fit shows a strong correlation. Bottom Right: histogram of lifetime measurements.
Fig. 6.
Fig. 6. Top: Several modeled spectra are shown. Red curve: FWHM=63  nm, red peak λ=643.4, QE=1.0, LER=298. Green curve: FWHM=35.5  nm, red peak λ=627, QE=0.75, LER=338. Purple curve: FWHM=15.5  nm, red peak λ=624.2, QE=0.5, LER=349. Bottom: LER versus FWHM results of filtered data set from modeling based on 3000 K device. The parameters and ranges of the model are found in Table 1. The data are filtered according to Table 2. The QE of the QDs is represented by the color scale. Points have been layered such that the minimum QE to attain a given LER is on top.
Fig. 7.
Fig. 7. LER versus FWHM results of filtered data set from modeling based on 4000 K device. The parameters and ranges of the model are found in Table 1. The data are filtered according to Table 2. The QE of the QDs is represented by the color scale. Points have been layered such that the minimum QE to attain a given LER is on top.
Fig. 8.
Fig. 8. LER versus QD peak wavelength from filtered data set from modeling based on 3000 K device. The parameters and ranges of the model are found in Table 1. The data are filtered according to Table 2.
Fig. 9.
Fig. 9. Top: BLU spectrum comprised of green and red Cd-based QDs. While this spectra is representative of the FWHM values, further color tuning of the peak emission can result in much better gamut coverage. The CF72 color filters are also shown. Bottom: Modeling results showing the impact of FWHM on Rec. 2020 coverage as calculated in CIE 1931 color space. This plot includes all wavelength and loading combinations, but has been filtered such that the maximum achievable gamut for any FWHM point is layered on top. The color bar indicates the fraction of Rec. 2020 coverage. A black datum representing literature reports for InP QDs has been included for comparison.
Fig. 10.
Fig. 10. Modeling results for Rec. 2020 coverage. The Rec. 2020 gamut is defined by the black dashed line. The D65 white point and Planckian locus are identified as well. The gamut attainable via use of Cd-based QDs is specified by the purple triangle while that of a leading InP QD system is shown as an orange triangle. As is conventionally done, these are measured/calculated at room temperature. The Cd-based QD has coverage of 80.8% Rec. 2020, while the InP-based QD has coverage of 66.7%.

Tables (3)

Tables Icon

Table 1. Ranges and Step Sizes for Parameters Used in Modeling QD-Based LED Spectra

Tables Icon

Table 2. Color Metric Filters Applied to Modeled Spectra

Tables Icon

Table 3. Ranges and Step Sizes for Parameters Used in Modeling QD Converted LED BLU Spectra

Metrics