Abstract

In this paper, we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid time- and wavelength-division multiplexing (TWDM) passive optical network (PON), i.e., a single passive optical device that functions as a 1×N wavelength demultiplexer for distributing the downstream signal in multiple wavelengths from the optical line terminal (OLT) to the N optical network units (ONUs), and simultaneously as an N×1 power combiner for collecting the upstream signal in the same wavelength from the N ONUs to the OLT. Through a design example of a 32 channel hybrid optical wavelength demultiplexer and power combiner on the silicon-on-insulator platform, our numerical simulation result shows that the insertion loss and adjacent channel crosstalk of the downstream wavelength demultiplexer are as low as 4.6 and 16.3  dB, respectively, while the insertion loss and channel non-uniformity of the upstream power combiner can reach 3.5 and 2.1 dB, respectively. The proposed structure can readily be extended to other material platforms such as the silica-based planar lightwave circuit. Its fabrication process is fully compatible with standard clean-room technologies such as photo-lithography and etching, without any complicated and/or costly approach involved.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
An optical power combiner/wavelength demultiplexing module for hybrid WDM FTTX

Jianwei Mu, Chenglin Xu, and Wei-Ping Huang
Opt. Express 17(6) 4791-4797 (2009)

Compact polymeric four-wavelength multiplexers based on cascaded step-size MMI for 1G/10G hybrid TDM-PON applications

Shu-Hao Fan, Daniel Guidotti, Hung-Chang Chien, and Gee-Kung Chang
Opt. Express 16(17) 12664-12669 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
    [Crossref]
  2. P. W. Shumate, “Fiber-to-the-home: 1977–2007,” J. Lightwave Technol. 26, 1093–1103 (2008).
    [Crossref]
  3. D. Meis, “FTTH is on the move,” in IEEE Global Telecommunications Conference (GLOBECOM), San Francisco, California (2006).
  4. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
    [Crossref]
  5. S. Park, C. Lee, K. Jeong, H. Park, J. Ahn, and K. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 22, 2582–2591 (2004).
    [Crossref]
  6. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw. 4, 737–758 (2005).
    [Crossref]
  7. A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in Hybrid TDM/WDM passive optical networks,” in IEEE Consumer Communications and Networking Conference (2006), Vol. 6, pp. 30–34.
  8. Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31, 726–727 (1995).
    [Crossref]
  9. M. Zirngibl, C. R. Doerr, and C. H. Joyner, “Demonstration of a splitter/router based on a chirped waveguide grating router,” IEEE Photon. Technol. Lett. 10, 87–89 (1998).
    [Crossref]
  10. Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in European Conference on Optical Communication (ECOC) (1996), Vol. 2, pp. 123–126.
  11. J. Mu, C. Xu, and W. Huang, “An optical power combiner/wavelength demultiplexing module for hybrid WDM FTTX,” Opt. Express 17, 4791–4797 (2009).
    [Crossref]
  12. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  13. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
    [Crossref]
  14. D. Dai and S. He, “Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals,” Opt. Commun. 281, 3471–3475 (2008).
    [Crossref]
  15. Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
    [Crossref]
  16. M. Bouda, J. Van Uffelen, C. Van Dam, and B. H. Verbeek, “Compact 1 × 16 power splitter based on symmetrical 1 × 2 MMI splitters,” Electron. Lett. 30, 1756–1758 (1994).
    [Crossref]
  17. C. Li, X. Li, X. Qiu, and Y. Xi, “A novel planar waveguide super-multiple-channel optical power splitter,” J. Lightwave Technol. 33, 5019–5024 (2015).
    [Crossref]
  18. K. Suzuki, T. Shibata, Y. Inoue, and H. Takahashi, “Reduction in the diffraction loss of an arrayed-waveguide grating by use of an interference fringe between slab and arrayed waveguides,” Opt. Lett. 30, 2400–2402 (2005).
    [Crossref]
  19. Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
    [Crossref]
  20. W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
    [Crossref]
  21. G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743–1745 (1992).
    [Crossref]

2015 (1)

2010 (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

2009 (1)

2008 (3)

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

P. W. Shumate, “Fiber-to-the-home: 1977–2007,” J. Lightwave Technol. 26, 1093–1103 (2008).
[Crossref]

D. Dai and S. He, “Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals,” Opt. Commun. 281, 3471–3475 (2008).
[Crossref]

2007 (2)

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
[Crossref]

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[Crossref]

2005 (2)

2004 (1)

2002 (1)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
[Crossref]

1998 (1)

M. Zirngibl, C. R. Doerr, and C. H. Joyner, “Demonstration of a splitter/router based on a chirped waveguide grating router,” IEEE Photon. Technol. Lett. 10, 87–89 (1998).
[Crossref]

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

1995 (1)

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31, 726–727 (1995).
[Crossref]

1994 (1)

M. Bouda, J. Van Uffelen, C. Van Dam, and B. H. Verbeek, “Compact 1 × 16 power splitter based on symmetrical 1 × 2 MMI splitters,” Electron. Lett. 30, 1756–1758 (1994).
[Crossref]

1992 (2)

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743–1745 (1992).
[Crossref]

Ahn, J.

Anand, S.

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[Crossref]

Assi, C. M.

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in Hybrid TDM/WDM passive optical networks,” in IEEE Consumer Communications and Networking Conference (2006), Vol. 6, pp. 30–34.

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Banerjee, A.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Bouda, M.

M. Bouda, J. Van Uffelen, C. Van Dam, and B. H. Verbeek, “Compact 1 × 16 power splitter based on symmetrical 1 × 2 MMI splitters,” Electron. Lett. 30, 1756–1758 (1994).
[Crossref]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Cappuzzo, M. A.

Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in European Conference on Optical Communication (ECOC) (1996), Vol. 2, pp. 123–126.

Chaudhuri, S. K.

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Chu, S.

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Clarke, F.

Cohen, L. G.

Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in European Conference on Optical Communication (ECOC) (1996), Vol. 2, pp. 123–126.

Dai, D.

D. Dai and S. He, “Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals,” Opt. Commun. 281, 3471–3475 (2008).
[Crossref]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Dhaini, A. R.

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in Hybrid TDM/WDM passive optical networks,” in IEEE Consumer Communications and Networking Conference (2006), Vol. 6, pp. 30–34.

Doerr, C. R.

M. Zirngibl, C. R. Doerr, and C. H. Joyner, “Demonstration of a splitter/router based on a chirped waveguide grating router,” IEEE Photon. Technol. Lett. 10, 87–89 (1998).
[Crossref]

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Hadley, G. R.

Hashimoto, T.

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
[Crossref]

He, S.

D. Dai and S. He, “Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals,” Opt. Commun. 281, 3471–3475 (2008).
[Crossref]

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[Crossref]

Henry, C. H.

Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in European Conference on Optical Communication (ECOC) (1996), Vol. 2, pp. 123–126.

Heron, R. W.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Himeno, A.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31, 726–727 (1995).
[Crossref]

Huang, W.

J. Mu, C. Xu, and W. Huang, “An optical power combiner/wavelength demultiplexing module for hybrid WDM FTTX,” Opt. Express 17, 4791–4797 (2009).
[Crossref]

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Inoue, Y.

K. Suzuki, T. Shibata, Y. Inoue, and H. Takahashi, “Reduction in the diffraction loss of an arrayed-waveguide grating by use of an interference fringe between slab and arrayed waveguides,” Opt. Lett. 30, 2400–2402 (2005).
[Crossref]

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31, 726–727 (1995).
[Crossref]

Jeong, K.

Joyner, C. H.

M. Zirngibl, C. R. Doerr, and C. H. Joyner, “Demonstration of a splitter/router based on a chirped waveguide grating router,” IEEE Photon. Technol. Lett. 10, 87–89 (1998).
[Crossref]

Kawachi, M.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31, 726–727 (1995).
[Crossref]

Kim, K.

Kramer, G.

Laskowski, E. J.

Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in European Conference on Optical Communication (ECOC) (1996), Vol. 2, pp. 123–126.

Lee, C.

Li, C.

Li, X.

Li, Y. P.

Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in European Conference on Optical Communication (ECOC) (1996), Vol. 2, pp. 123–126.

Meis, D.

D. Meis, “FTTH is on the move,” in IEEE Global Telecommunications Conference (GLOBECOM), San Francisco, California (2006).

Moriwaki, K.

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31, 726–727 (1995).
[Crossref]

Mu, J.

Mukherjee, B.

Park, H.

Park, S.

Park, Y.

Patel, S. S.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Pesavento, G.

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
[Crossref]

Pfeiffer, T.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Qiu, X.

Saida, T.

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
[Crossref]

Sakamaki, Y.

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Shami, A.

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in Hybrid TDM/WDM passive optical networks,” in IEEE Consumer Communications and Networking Conference (2006), Vol. 6, pp. 30–34.

Shi, Y.

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[Crossref]

Shibata, T.

Shumate, P. W.

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Smith, J.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Song, H.

Song, K.

Suzuki, K.

Takahashi, H.

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
[Crossref]

K. Suzuki, T. Shibata, Y. Inoue, and H. Takahashi, “Reduction in the diffraction loss of an arrayed-waveguide grating by use of an interference fringe between slab and arrayed waveguides,” Opt. Lett. 30, 2400–2402 (2005).
[Crossref]

Tamura, M.

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
[Crossref]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

M. Bouda, J. Van Uffelen, C. Van Dam, and B. H. Verbeek, “Compact 1 × 16 power splitter based on symmetrical 1 × 2 MMI splitters,” Electron. Lett. 30, 1756–1758 (1994).
[Crossref]

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Van Uffelen, J.

M. Bouda, J. Van Uffelen, C. Van Dam, and B. H. Verbeek, “Compact 1 × 16 power splitter based on symmetrical 1 × 2 MMI splitters,” Electron. Lett. 30, 1756–1758 (1994).
[Crossref]

van Veen, D. T.

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Verbeek, B. H.

M. Bouda, J. Van Uffelen, C. Van Dam, and B. H. Verbeek, “Compact 1 × 16 power splitter based on symmetrical 1 × 2 MMI splitters,” Electron. Lett. 30, 1756–1758 (1994).
[Crossref]

Xi, Y.

Xu, C.

J. Mu, C. Xu, and W. Huang, “An optical power combiner/wavelength demultiplexing module for hybrid WDM FTTX,” Opt. Express 17, 4791–4797 (2009).
[Crossref]

W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Yang, S.

Zirngibl, M.

M. Zirngibl, C. R. Doerr, and C. H. Joyner, “Demonstration of a splitter/router based on a chirped waveguide grating router,” IEEE Photon. Technol. Lett. 10, 87–89 (1998).
[Crossref]

Bell Labs Tech. J. (1)

R. W. Heron, T. Pfeiffer, D. T. van Veen, J. Smith, and S. S. Patel, “Technology innovations and architecture solutions for the next-generation optical access network,” Bell Labs Tech. J. 13, 163–181 (2008).
[Crossref]

Electron. Lett. (3)

Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31, 726–727 (1995).
[Crossref]

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low-loss Y-branch waveguides designed by wavefront matching method and their application to a compact 1 × 32 splitter,” Electron. Lett. 43, 217–219 (2007).
[Crossref]

M. Bouda, J. Van Uffelen, C. Van Dam, and B. H. Verbeek, “Compact 1 × 16 power splitter based on symmetrical 1 × 2 MMI splitters,” Electron. Lett. 30, 1756–1758 (1994).
[Crossref]

IEEE Commun. Mag. (1)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[Crossref]

M. Zirngibl, C. R. Doerr, and C. H. Joyner, “Demonstration of a splitter/router based on a chirped waveguide grating router,” IEEE Photon. Technol. Lett. 10, 87–89 (1998).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Netw. (1)

Opt. Commun. (1)

D. Dai and S. He, “Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals,” Opt. Commun. 281, 3471–3475 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (3)

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in Hybrid TDM/WDM passive optical networks,” in IEEE Consumer Communications and Networking Conference (2006), Vol. 6, pp. 30–34.

D. Meis, “FTTH is on the move,” in IEEE Global Telecommunications Conference (GLOBECOM), San Francisco, California (2006).

Y. P. Li, L. G. Cohen, C. H. Henry, E. J. Laskowski, and M. A. Cappuzzo, “Demonstration and application of a monolithic two-PONs-in-one device,” in European Conference on Optical Communication (ECOC) (1996), Vol. 2, pp. 123–126.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram for illustration of the proposed structure: while the downstream signal (from F to F) passes through a conventional AWG, the upstream signal (from F to A) sees an optical power (beam) combiner.
Fig. 2.
Fig. 2. (a) Schematic (top) view of the hybrid optical wavelength demultiplexer and power combiner; inset 1, cross-sectional view of the Si photonic wire; inset 2, a schematic (top) view of the equivalent AWs and the modifications. (b) Illustration of the proposed structure (excluding the structure for combing the separated input ports into one): while the downstream signal (from F to F) passes through a conventional AWG, the upstream signal (from F to A1/A2) sees an optical power (beam) combiner; inset 3, field distribution with an interference pattern at the input port of the AWs for the upstream signal; inset 4, a zoomed-in view of part 2 of the AWs, where ΔL and dA are the equivalent unit length difference and unit width, respectively; inset 5, interference fringes at the output channels for the upstream signal, where dO is the interference fringe gap matching to the gap between the output waveguides.
Fig. 3.
Fig. 3. Electric field patterns in the (a) first FPR and (b) second FPR for the downstream signal at center wavelength λ0 when the device is working as a wavelength demultiplexer, and electric field patterns in the (c) first FPR and (d) second FPR for the upstream signal when the device is working as a power combiner.
Fig. 4.
Fig. 4. (a) Spectral response of the downstream wavelength demultiplexer and (b) the field distribution at output channels for the upstream optical power combiner at wavelength λ1=1303.3  nm.
Fig. 5.
Fig. 5. Spectral response of channels 23 to 27 (with noise) in the wavelength demultiplexer for the downstream signal.
Fig. 6.
Fig. 6. Field distribution (with noise) at the output channels of the upstream optical power combiner at wavelength λ1=1303.3  nm.

Tables (1)

Tables Icon

Table 1. Material and Structural Parameters of the Device

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ncΔL=mλ0,m=1,2,3,,
λ1=ncΔL/m,m=1,2,3,,
λ1=ncΔL/(m+0.5),m=1,2,3,,
x0/z0=ncΔL/nsdA.
dO=λ1(z0R)/(2nsx0),
dO=λ1dA(z0R)2ncz0·1ΔL,
ΔL=mλ0/nc,m=1,2,3,,

Metrics