Abstract

In this paper, we examine the tiny polarization rotation effect in total internal reflection due to the spin–orbit interaction of light. We find that the tiny polarization rotation rate will induce a geometric phase gradient, which can be regarded as the physical origin of photonic spin Hall effect. We demonstrate that the spin-dependent splitting in position space is related to the polarization rotation in momentum space, while the spin-dependent splitting in momentum space is attributed to the polarization rotation in position space. Furthermore, we introduce a quantum weak measurement to determine the tiny polarization rotation rate. The rotation rate in momentum space is obtained with 118 nm, which manifests itself as a spatial shift, and the rotation rate in position space is achieved with 38  μrad/λ, which manifests itself as an angular shift. The investigation of the polarization rotation characteristics will provide insights into the photonic spin Hall effect and will enable us to better understand the spin–orbit interaction of light.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals

Wenshuai Zhang, Weijie Wu, Shizhen Chen, Jin Zhang, Xiaohui Ling, Weixing Shu, Hailu Luo, and Shuangchun Wen
Photon. Res. 6(6) 511-516 (2018)

Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting

Xinxing Zhou and Xiaohui Ling
Opt. Express 24(3) 3025-3036 (2016)

Manipulating the spin-dependent splitting by geometric Doppler effect

Yachao Liu, Yougang Ke, Junxiao Zhou, Hailu Luo, and Shuangchun Wen
Opt. Express 23(13) 16682-16692 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
    [Crossref]
  2. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
    [Crossref]
  3. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
    [Crossref]
  4. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008).
    [Crossref]
  5. Y. Qin, Y. Li, H. He, and Q. Gong, “Measurement of spin Hall effect of reflected light,” Opt. Lett. 34, 2551–2553 (2009).
    [Crossref]
  6. H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
    [Crossref]
  7. L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
    [Crossref]
  8. Y. Lv, Z. Wang, Y. Jin, M. Cao, L. Han, P. Zhang, H. Li, H. Gao, and F. Li, “Spin polarization separation of light reflected at Brewster angle,” Opt. Lett. 37, 984–986 (2012).
    [Crossref]
  9. X. Qiu, Z. Zhang, L. Xie, J. Qiu, F. Gao, and J. Du, “Incident-polarization-sensitive and large in-plane-photonic spin-splitting at the Brewster angle,” Opt. Lett. 40, 1018–1021 (2015).
    [Crossref]
  10. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
    [Crossref]
  11. J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
    [Crossref]
  12. C. Prajapati, S. Pidishety, and N. K. Viswanathan, “Polarimetric measurement method to calculate optical beam shifts,” Opt. Lett. 39, 4388–4391 (2014).
    [Crossref]
  13. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  14. M. R. Dennis and J. B. Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14, 073013 (2012).
    [Crossref]
  15. S. Goswami, M. Pal, A. Nandi, P. K. Panigrahi, and N. Ghosh, “Simultaneous weak value amplification of angular Goos–Hänchen and Imbert–Fedorov shifts in partial reflection,” Opt. Lett. 39, 6229–6232 (2014).
    [Crossref]
  16. A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
    [Crossref]
  17. S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
    [Crossref]
  18. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36, 3200–3202 (2011).
    [Crossref]
  19. X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
    [Crossref]
  20. H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
    [Crossref]
  21. X. Zhou, X. Li, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
    [Crossref]
  22. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
    [Crossref]
  23. K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
    [Crossref]
  24. T. Van Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves,” Optica 3, 118–126 (2016).
    [Crossref]

2016 (1)

2015 (4)

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]

X. Qiu, Z. Zhang, L. Xie, J. Qiu, F. Gao, and J. Du, “Incident-polarization-sensitive and large in-plane-photonic spin-splitting at the Brewster angle,” Opt. Lett. 40, 1018–1021 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

2014 (5)

S. Goswami, M. Pal, A. Nandi, P. K. Panigrahi, and N. Ghosh, “Simultaneous weak value amplification of angular Goos–Hänchen and Imbert–Fedorov shifts in partial reflection,” Opt. Lett. 39, 6229–6232 (2014).
[Crossref]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]

C. Prajapati, S. Pidishety, and N. K. Viswanathan, “Polarimetric measurement method to calculate optical beam shifts,” Opt. Lett. 39, 4388–4391 (2014).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref]

2012 (5)

X. Zhou, X. Li, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

M. R. Dennis and J. B. Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14, 073013 (2012).
[Crossref]

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Y. Lv, Z. Wang, Y. Jin, M. Cao, L. Han, P. Zhang, H. Li, H. Gao, and F. Li, “Spin polarization separation of light reflected at Brewster angle,” Opt. Lett. 37, 984–986 (2012).
[Crossref]

2011 (3)

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36, 3200–3202 (2011).
[Crossref]

2009 (1)

2008 (2)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008).
[Crossref]

2006 (1)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

1988 (1)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Aharonov, Y.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Aiello, A.

Albert, D. Z.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Bekshaev, A. Y.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

Boyd, R. W.

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]

Cao, M.

Chen, J.

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Chen, S.

S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]

Dennis, M. R.

M. R. Dennis and J. B. Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14, 073013 (2012).
[Crossref]

Dressel, J.

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]

Du, J.

Fan, D.

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

Gao, F.

Gao, H.

Ghosh, N.

Gong, Q.

Goswami, S.

Götte, J. B.

M. R. Dennis and J. B. Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14, 073013 (2012).
[Crossref]

Gu, B.

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Han, L.

He, H.

Hermosa, N.

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Howell, J. C.

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]

Jacob, Z.

Jin, Y.

Jordan, A. N.

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]

Kong, L.

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Li, F.

Li, H.

Li, S.

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Li, X.

X. Zhou, X. Li, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

Li, Y.

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Y. Qin, Y. Li, H. He, and Q. Gong, “Measurement of spin Hall effect of reflected light,” Opt. Lett. 34, 2551–2553 (2009).
[Crossref]

Ling, X.

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

Luo, H.

S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]

Lv, Y.

Malik, M.

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]

Martínez-Rincón, J.

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]

Mi, C.

S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]

Miatto, F. M.

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Nandi, A.

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref]

Nugrowati, A. M.

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Pal, M.

Panigrahi, P. K.

Pidishety, S.

Prajapati, C.

Qin, Y.

Qiu, J.

Qiu, X.

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Shu, W.

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

Smirnova, D.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Vaidman, L.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Van Mechelen, T.

Viswanathan, N. K.

Wang, H.

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Wang, X.

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

Wang, Z.

Wen, S.

S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]

Woerdman, J. P.

Xiao, Z.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

Xie, L.

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Zhang, P.

Zhang, Z.

Zhou, X.

S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]

Appl. Phys. Lett. (2)

L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, “Spin Hall effect of reflected light from an air–glass interface around the Brewster angle,” Appl. Phys. Lett. 100, 071109 (2012).
[Crossref]

X. Zhou, X. Li, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101, 251602 (2012).
[Crossref]

Nat. Commun. (1)

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref]

Nat. Photonics (1)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

New J. Phys. (1)

M. R. Dennis and J. B. Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14, 073013 (2012).
[Crossref]

Opt. Lett. (7)

Optica (1)

Phys. Rev. A (4)

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84, 043806 (2011).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85, 043809 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84, 033801 (2011).
[Crossref]

S. Chen, X. Zhou, C. Mi, H. Luo, and S. Wen, “Modified weak measurements for the detection of the photonic spin Hall effect,” Phys. Rev. A 91, 062105 (2015).
[Crossref]

Phys. Rev. Lett. (3)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Phys. Rev. X (1)

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).
[Crossref]

Rev. Mod. Phys. (1)

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307–316 (2014).
[Crossref]

Science (2)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin Hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Polarization rotation of light beam in total internal reflection at glass–air interface and in partial reflection at air–glass interface. (a) and (c) Polarization rotation in momentum space. (b) and (d) Polarization rotation in position space. The incident angle is chosen as θi=45°. To make the polarization rotation characteristics more noticeable, we amplify the rotation angles by 100 times.
Fig. 2.
Fig. 2. Experimental setup for observation of the spin-dependent splitting in photonic SHE with complex weak values. The He–Ne laser inputs a linearly polarized Gaussian beam; prisms have refractive index n=1.515 (BK7 at 632.8 nm); the half-wave plate (HWP) for adjusting the intensity of light beam; the lenses L1 and L2 have 50 and 280 mm focal lengths, respectively; the GLP1 and GLP2 and the QWP together provide the preselected and postselected states; and the CCD will be used for capturing the intensity profiles. The inset represent the preselected and postselected angles on a Poincaré sphere. Note that the experiment setup is slightly different from those in Refs. [5,6]; in the present case the QWP has been introduced to modulate the preselected state.
Fig. 3.
Fig. 3. Transverse spatial displacement of initial and final displacement when the polarization states of the incident light beam are |H and |V, namely Φ=0 and Φ=π. (a) and (c) show the amplified shift of |H and |V, respectively. (b) and (d) are the corresponding initial spin-dependent splitting in position space. Insets in (a) and (c) represent the preselected and postselected angles on Poincaré spheres, respectively.
Fig. 4.
Fig. 4. Transverse angular displacement of initial and final displacement as a function of preselection angle. (a) and (c) show the amplified shift of |H and |V, respectively. (b) and (d) are the corresponding initial spin-dependent splitting in momentum space. Insets in (a) and (c) represent the preselected and postselected angles on the Poincaré spheres.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

|H(ki,r)=|P(ki,r)kiyki,rcotθi,r|S(ki,r),
|V(ki,r)=|S(ki,r)+kiyki,rcotθi,r|P(ki,r).
|H(ki)rp(|H(kr)+kiyδrH|V(kr)),
|V(ki)rs(|V(kr)kiyδrV|H(kr)),
δrH=[1+|rs|exp(iφs)|rp|exp(iφp)]cotθiki,
δrV=[1+|rp|exp(iφp)|rs|exp(iφs)]cotθiki.
Re[δrH]=[1+|rs||rp|cos(φsφp)]cotθiki,
Im[δrH]=|rs||rp|sin(φsφp)cotθiki,
Re[δrV]=[1+|rp||rs|cos(φpφs)]cotθiki,
Im[δrV]=|rp||rs|sin(φpφs)cotθiki.
|Φ=w02πexp[w02(kix2+kiy2)4],
|ψrH=rp|Hkry(rp+rs)cotθiki|V=rp2[(1+ikryδrH)|++(1ikryδrH)|]rp2[exp(ikryδrH)|++exp(ikryδrH)|].
|ψrH=rpexp(iφp)2[exp(ikryRe[δrH])|++exp(ikryRe[δrH])|].
ΦG=σkryRe[δrH],
y±H=ΦGkry=σRe[δrH].
|ψrH=rpexp(iφp)2[exp(ikrIm[δrH]zRyr)|++exp(+ikrIm[δrH]zRyr)|].
ΦG=σkrIm[δrH]zRyr.
ΔkryH=ΦGyr=σkrIm[δr]zR.
y±H=Re[δrH]±zrIm[δrH]zR.
y±V=Re[δrV]±zrIm[δrV]zR.
(cosγsinγ)=exp(+iφG)|++exp(iφG)|,
|Φf=ψf|exp(iσkryδrH,V)|ψi|Φi=ψf|1+iσkryδH,V|ψi|Φiψf|ψi(1+ikryδrH,Vψf|σ|ψiψf|ψi)|Φi=ψf|ψi(1+ikryAwδH,V)|Φi.
Aw=ψf|σ|ψiψf|ψi,
Im[AwδrH,V]=Re[Aw]Im[δrH,V]+Im[Aw]Re[δrH,V].
|ψi=cos(Θ+2α2)|++eiΦsin(Θ+2α2)|,
|ψf=sin(Θ2)|+ei(Φ+2β)cos(Θ2)|,
Aw=sin2αcos2αcos2β1+isin2βcos2αcos2αcos2β1.
ywH,V=zrkrΦf|kry|ΦfΦf|Φf.
ywH,V=zrzRRe[δrH,V]cotβ.
ywH,V=zrzRIm[δrH,V]cotα.

Metrics