Abstract

We have demonstrated a high-average-power, high-repetition-rate optical terahertz (THz) source based on difference frequency generation (DFG) in the GaSe crystal by using a near-degenerate 2 μm intracavity KTP optical parametric oscillator as the pump source. The power of the 2 μm dual-wavelength laser was up to 12.33 W with continuous tuning ranges of 1988.0–2196.2 nm/2278.4–2065.6 nm for two waves. Different GaSe cystal lengths have been experimentally investigated for the DFG THz source in order to optimize the THz output power, which was in good agreement with the theoretical analysis. Based on an 8 mm long GaSe crystal, the THz wave was continuously tuned from 0.21 to 3 THz. The maximum THz average power of 1.66 μW was obtained at repetition rate of 10 kHz under 1.48 THz. The single pulse energy amounted to 166 pJ and the conversion efficiency from 2 μm laser to THz output was 1.68×106. The signal-to-noise ratio of the detected THz voltage was 23 dB. The acceptance angle of DFG in the GaSe crystal was measured to be 0.16°.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm

Jialin Mei, Kai Zhong, Maorong Wang, Yang Liu, Degang Xu, Wei Shi, Yuye Wang, Jianquan Yao, Robert A. Norwood, and Nasser Peyghambarian
Opt. Express 24(20) 23368-23375 (2016)

Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate

Kodo Kawase, Takaaki Hatanaka, Hidenori Takahashi, Koichiro Nakamura, Tetsuo Taniuchi, and Hiromasa Ito
Opt. Lett. 25(23) 1714-1716 (2000)

Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dual-wavelength BBO optical parametric oscillator

Takashi Notake, Kouji Nawata, Hiroshi Kawamata, Takeshi Matsukawa, Feng Qi, and Hiroaki Minamide
Opt. Express 20(23) 25850-25857 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49, 357–364 (2013).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  3. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
    [Crossref]
  4. W. C. Chu, S. A. Ku, H. J. Wang, C. W. Luo, Y. M. Andreev, G. Lanskii, and T. Kobayashi, “Widely linear and non-phase-matched optical-to-terahertz conversion on GaSe:Te crystals,” Opt. Lett. 37, 945–947 (2012).
    [Crossref]
  5. S. A. Ku, W. C. Chu, C. W. Luo, Y. M. Andreev, G. Lanskii, A. Shaidukoi, T. Izaak, V. Svetlichnyi, K. H. Wu, and T. Kobayashi, “Optimal Te-doping in GaSe for non-linear applications,” Opt. Express 20, 5029–5037 (2012).
    [Crossref]
  6. W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “An efficient, tunable, and coherent 0.18–5.27  THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [Crossref]
  7. M. Tang, H. Minamide, Y. Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
    [Crossref]
  8. M. Tang, H. Minamide, Y. Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35, 1698–1700 (2010).
    [Crossref]
  9. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
    [Crossref]
  10. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35, 3979–3981 (2010).
    [Crossref]
  11. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98, 131106 (2011).
    [Crossref]
  12. T. Tanikuchi, J. I. Shikata, and H. Ito, “Continuously tunable THz-wave generation from GaP crystal by difference frequency mixing with a dual-wavelength KTP-OPO,” in 8th International Conference on Terahertz Electronics (2000), pp. 225–228.
  13. K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
    [Crossref]
  14. K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
    [Crossref]
  15. D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
    [Crossref]
  16. P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
    [Crossref]
  17. J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
    [Crossref]
  18. J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
    [Crossref]
  19. K. Kato, “Parametric oscillation at 3.2  μm in KTP pumped at 1.064  μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
    [Crossref]
  20. K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18  μm spectral region,” Opt. Commun. 118, 375–378 (1995).
    [Crossref]
  21. P. E. Powers, Fundamentals of Nonlinear Optics (CRC Press, 2011).

2016 (3)

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

2013 (2)

D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
[Crossref]

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49, 357–364 (2013).
[Crossref]

2012 (3)

2011 (2)

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98, 131106 (2011).
[Crossref]

M. Tang, H. Minamide, Y. Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
[Crossref]

2010 (3)

2008 (1)

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2003 (1)

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
[Crossref]

2002 (1)

1995 (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18  μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

1991 (1)

K. Kato, “Parametric oscillation at 3.2  μm in KTP pumped at 1.064  μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[Crossref]

Abe, T.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
[Crossref]

Andreev, Y. M.

Asai, K.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
[Crossref]

Burnett, A. D.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Chu, W. C.

Cunningham, J. E.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Davies, G.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Ding, Y. J.

Fan, W.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Fernelius, N.

He, Y.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49, 357–364 (2013).
[Crossref]

Ito, H.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
[Crossref]

M. Tang, H. Minamide, Y. Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
[Crossref]

M. Tang, H. Minamide, Y. Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35, 1698–1700 (2010).
[Crossref]

T. Tanikuchi, J. I. Shikata, and H. Ito, “Continuously tunable THz-wave generation from GaP crystal by difference frequency mixing with a dual-wavelength KTP-OPO,” in 8th International Conference on Terahertz Electronics (2000), pp. 225–228.

Izaak, T.

Kato, K.

K. Kato, “Parametric oscillation at 3.2  μm in KTP pumped at 1.064  μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[Crossref]

Kimura, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
[Crossref]

Kobayashi, T.

Ku, S. A.

Kulevskii, L. A.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18  μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

Lanskii, G.

Lee, A.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49, 357–364 (2013).
[Crossref]

Li, Y.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

Li, Z. Y.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

Linfield, E. H.

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Liu, P. X.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
[Crossref]

Liu, Y.

Luo, C. W.

Mei, J. L.

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

Minamide, H.

Miyake, Y.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
[Crossref]

Nasser, P.

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

Nawata, K.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
[Crossref]

Nishizawa, J.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
[Crossref]

Notake, T.

Ohno, S.

Pask, H.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49, 357–364 (2013).
[Crossref]

Powers, P. E.

P. E. Powers, Fundamentals of Nonlinear Optics (CRC Press, 2011).

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98, 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35, 3979–3981 (2010).
[Crossref]

Robert, A. N.

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

Saito, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
[Crossref]

Sato, A.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
[Crossref]

Shaidukoi, A.

Shi, W.

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “An efficient, tunable, and coherent 0.18–5.27  THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[Crossref]

Shikata, J. I.

T. Tanikuchi, J. I. Shikata, and H. Ito, “Continuously tunable THz-wave generation from GaP crystal by difference frequency mixing with a dual-wavelength KTP-OPO,” in 8th International Conference on Terahertz Electronics (2000), pp. 225–228.

Suto, K.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
[Crossref]

Svetlichnyi, V.

Tanabe, T.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
[Crossref]

Tang, M.

Tanikuchi, T.

T. Tanikuchi, J. I. Shikata, and H. Ito, “Continuously tunable THz-wave generation from GaP crystal by difference frequency mixing with a dual-wavelength KTP-OPO,” in 8th International Conference on Terahertz Electronics (2000), pp. 225–228.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Vodopyanov, K. L.

W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, “An efficient, tunable, and coherent 0.18–5.27  THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[Crossref]

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18  μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

Wang, H. J.

Wang, M. R.

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

Wang, P.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

Wang, Y. Y.

Wang, Z.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

Wu, K. H.

Wu, Y. C.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

Xu, D. G.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
[Crossref]

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

Yan, C.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

Yao, J. Q.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
[Crossref]

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

Zhang, G. C.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

Zhang, H. Y.

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

Zhang, X. Y.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

Zhang, X. Z.

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

Zhao, P.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98, 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35, 3979–3981 (2010).
[Crossref]

Zhong, K.

J. L. Mei, K. Zhong, M. R. Wang, Y. Liu, D. G. Xu, W. Shi, Y. Y. Wang, J. Q. Yao, A. N. Robert, and P. Nasser, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2  μm,” Opt. Express 24, 23368–23375 (2016).
[Crossref]

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
[Crossref]

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

Zotova, I. B.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98, 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35, 3979–3981 (2010).
[Crossref]

Appl. Phys. Express (1)

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5, 112401 (2012).
[Crossref]

Appl. Phys. Lett. (2)

P. X. Liu, X. Y. Zhang, C. Yan, D. G. Xu, Y. Li, W. Shi, G. C. Zhang, X. Z. Zhang, J. Q. Yao, and Y. C. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile,” Appl. Phys. Lett. 380, 621–627 (2016).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98, 131106 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49, 357–364 (2013).
[Crossref]

K. Kato, “Parametric oscillation at 3.2  μm in KTP pumped at 1.064  μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. L. Mei, K. Zhong, M. R. Wang, P. X. Liu, D. G. Xu, Y. Y. Wang, W. Shi, J. Q. Yao, A. N. Robert, and P. Nasser, “High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO,” IEEE Photon. Technol. Lett. 28, 1501–1504 (2016).
[Crossref]

J. Phys. D (1)

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP,” J. Phys. D 37, 155–158 (2003).
[Crossref]

Mater. Today (1)

G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Opt. Commun. (2)

K. Zhong, J. Q. Yao, D. G. Xu, Z. Wang, Z. Y. Li, H. Y. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283, 3520–3524 (2010).
[Crossref]

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18  μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

D. G. Xu, W. Shi, K. Zhong, Y. Y. Wang, P. X. Liu, and J. Q. Yao, “The widely tunable THz generation in QPM-GaAs crystal pumped by a near-degenerate dual-wavelength KTP OPO at around 2.127  μm,” Proc. SPIE 8604, 86040 (2013).
[Crossref]

Other (2)

T. Tanikuchi, J. I. Shikata, and H. Ito, “Continuously tunable THz-wave generation from GaP crystal by difference frequency mixing with a dual-wavelength KTP-OPO,” in 8th International Conference on Terahertz Electronics (2000), pp. 225–228.

P. E. Powers, Fundamentals of Nonlinear Optics (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup of the THz DFG with GaSe crystals.

Fig. 2.
Fig. 2.

(a) Output power of the Nd:YAG laser and 2 μm KTP OPO versus electric input power as well as 1.06 to 2 μm dual-wavelength conversion efficiency. (b) Angle tuning characteristics of the KTP OPO. The blue circles and the red solid line represent the experimental and theoretical results, respectively. Triangles indicate the 2 μm dual-wavelength laser power with respect to related PM angles of KTP.

Fig. 3.
Fig. 3.

(a) Dual-wavelength spectra of the 2 μm pump source of the DFG (the insets show the FWHM of the two wavelengths). (b) Temporal pulse profile for the combined dual wavelengths and the two independent separated wavelengths of 2118.1 and 2140.5 nm. The inset shows the pulse shape of the 1.06 μm laser.

Fig. 4.
Fig. 4.

THz wavelengths versus external PM angles. Inset: THz frequency versus external PM angles. Circles and the solid curve represent the experimental and theoretical results, respectively. Squares and triangles represent the 2 μm wavelength used for DFG THz.

Fig. 5.
Fig. 5.

(a) THz output voltage versus THz frequency for two GaSe crystals with different lengths under 2 μm dual-wavelength pump power of about 950 mW. (b) Calculated THz intensity (solid curve) and measured THz voltages (squares) of the DFG THz source versus the interaction length at 1.48 THz. The inset shows the absorption coefficient of our GaSe crystal measured with a THz time domain system.

Fig. 6.
Fig. 6.

Dependences of THz voltages and average power on the 2 μm dual-wavelength pump power. The red line is a quadratic fit of experimental data points. The inset shows the THz signal detected by using the 4.2 K Si bolometer.

Fig. 7.
Fig. 7.

THz intensity as a function of the rotation angle of the THz polarizer at 1.48 THz.

Fig. 8.
Fig. 8.

Accepted PM angle of the GaSe crystal at 1.48 THz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δθ=1l1[(n2en2o)/λp2+(nTHzenTHzo)/λTHz]sin2θp,

Metrics