Abstract

A high sensitivity D-shaped hole double-cladding fiber temperature sensor based on surface plasmon resonance (SPR) is designed and investigated by a full-vector finite element method. Within the D-shaped hole double-cladding fiber, the hollow D-section is coated with gold film and then injected in a high thermo-optic coefficient liquid to realize the high temperature sensitivity for the fiber SPR temperature sensor. The numerical simulation results show that the peaking loss of the D-shaped hole double-cladding fiber SPR is hugely influenced by the distance between the D-shaped hole and fiber core and by the thickness of the gold film, but the temperature sensitivity is almost insensitive to the above parameters. When the thermo-optic coefficient is 2.8×104/°C, the thickness of the gold film is 47 nm, and the distance between the D-shaped hole and fiber core is 5 μm, the temperature sensitivity of the D-shaped hole fiber SPR sensor can reach to 3.635  nm/°C.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core

Nannan Luan, Ran Wang, Wenhua Lv, and Jianquan Yao
Opt. Express 23(7) 8576-8582 (2015)

Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber

Tiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang
Opt. Express 25(17) 20313-20322 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19, 18452–18457 (2011).
    [Crossref]
  2. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11, 2891–2894 (2011).
    [Crossref]
  3. C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24, 149–151 (2012).
    [Crossref]
  4. S.-j. Qiu, Y. Chen, F. Xu, and Y.-q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37, 863–865 (2012).
    [Crossref]
  5. Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt. 51, 6361–6367 (2012).
    [Crossref]
  6. H. Chen, S. Li, J. Li, and Y. Han, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photon. J. 6, 1–6 (2014).
  7. M. F. O. Hameed, M. Y. Azab, A. M. Heikal, and S. M. El-Hefnawy, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
    [Crossref]
  8. W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
    [Crossref]
  9. G. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer, 2000), pp. 195–211.
  10. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002).
    [Crossref]
  11. R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
    [Crossref]
  12. Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express 18, 15383–15388 (2010).
    [Crossref]
  13. Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
    [Crossref]
  14. L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
    [Crossref]
  15. P. J. A. Sazio and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [Crossref]
  16. N. F. Baril, “High-pressure microfluidic chemical deposition: replacing the air within microstructured optical fibers,” dissertations, Doctor of Philosophy (Electronic Theses and Dissertations for Graduate School, 2008).
  17. N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
    [Crossref]

2016 (1)

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, and S. M. El-Hefnawy, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

2014 (2)

H. Chen, S. Li, J. Li, and Y. Han, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photon. J. 6, 1–6 (2014).

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

2013 (1)

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

2012 (4)

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24, 149–151 (2012).
[Crossref]

S.-j. Qiu, Y. Chen, F. Xu, and Y.-q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37, 863–865 (2012).
[Crossref]

Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt. 51, 6361–6367 (2012).
[Crossref]

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

2011 (2)

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19, 18452–18457 (2011).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11, 2891–2894 (2011).
[Crossref]

2010 (1)

2006 (1)

P. J. A. Sazio and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

2002 (1)

2001 (1)

W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[Crossref]

1986 (1)

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[Crossref]

Agrawal, G.

G. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer, 2000), pp. 195–211.

Azab, M. Y.

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, and S. M. El-Hefnawy, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

Badding, J. V.

P. J. A. Sazio and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Baril, N. F.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

N. F. Baril, “High-pressure microfluidic chemical deposition: replacing the air within microstructured optical fibers,” dissertations, Doctor of Philosophy (Electronic Theses and Dissertations for Graduate School, 2008).

Bennion, I.

Birch, R. D.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[Crossref]

Borhan, A.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Chen, C.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Chen, H.

H. Chen, S. Li, J. Li, and Y. Han, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photon. J. 6, 1–6 (2014).

Chen, Q. D.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Chen, Y.

Day, T. D.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Deng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11, 2891–2894 (2011).
[Crossref]

Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express 18, 15383–15388 (2010).
[Crossref]

El-Hefnawy, S. M.

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, and S. M. El-Hefnawy, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

Fan, P.

Geng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11, 2891–2894 (2011).
[Crossref]

Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express 18, 15383–15388 (2010).
[Crossref]

Gopalan, V.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Hameed, M. F. O.

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, and S. M. El-Hefnawy, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

Han, Y.

H. Chen, S. Li, J. Li, and Y. Han, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photon. J. 6, 1–6 (2014).

Hao, X.

He, R.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Healy, N.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Heikal, A. M.

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, and S. M. El-Hefnawy, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

Hong, X.

Hou, J.

Hsu, J.-M.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24, 149–151 (2012).
[Crossref]

Huang, Z.

Hwang, H.-E.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24, 149–151 (2012).
[Crossref]

Jung, W.-G.

W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[Crossref]

Kang, S.-W.

W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[Crossref]

Keshavarzi, B.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Kim, E.-S.

W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[Crossref]

Kim, K.-T.

W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[Crossref]

Kim, S.-W.

W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[Crossref]

Kou, J. L.

Krishnamurthi, M.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Lee, C.-L.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24, 149–151 (2012).
[Crossref]

Lee, L.-H.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24, 149–151 (2012).
[Crossref]

Li, J.

H. Chen, S. Li, J. Li, and Y. Han, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photon. J. 6, 1–6 (2014).

Li, L.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[Crossref]

Li, S.

H. Chen, S. Li, J. Li, and Y. Han, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photon. J. 6, 1–6 (2014).

Li, X.

Lu, Q.

Lu, Y. Q.

Lu, Y.-q.

Payne, D. N.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[Crossref]

Peacock, A. C.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Peng, Y.

Qiu, S. J.

Qiu, S.-j.

Sazio, P. J. A.

P. J. A. Sazio and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Shao, Y.

Shu, X.

Song, K.

Sparks, J. R.

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

Sun, H. B.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Tan, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11, 2891–2894 (2011).
[Crossref]

Tan, Z.

Tong, W.

Wang, C.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Wei, H.

Wylangowski, G.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[Crossref]

Xu, F.

Xue, Y.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Yang, R.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Yu, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11, 2891–2894 (2011).
[Crossref]

Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express 18, 15383–15388 (2010).
[Crossref]

Yu, Y. S.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Zhang, B. L.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Zhang, L.

Zhu, F.

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[Crossref]

IEEE Photon. J. (1)

H. Chen, S. Li, J. Li, and Y. Han, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photon. J. 6, 1–6 (2014).

IEEE Photon. Technol. Lett. (4)

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, and S. M. El-Hefnawy, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

W.-G. Jung, S.-W. Kim, K.-T. Kim, E.-S. Kim, and S.-W. Kang, “High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209–1211 (2001).
[Crossref]

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry–Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24, 149–151 (2012).
[Crossref]

R. Yang, Y. S. Yu, Y. Xue, C. Chen, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “A highly sensitive temperature sensor based on a liquid-sealed S-tapered fiber,” IEEE Photon. Technol. Lett. 25, 829–832 (2013).
[Crossref]

IEEE Sens. J. (1)

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J. 11, 2891–2894 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

N. F. Baril, R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, and N. Healy, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134, 19–22 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Science (1)

P. J. A. Sazio and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Other (2)

N. F. Baril, “High-pressure microfluidic chemical deposition: replacing the air within microstructured optical fibers,” dissertations, Doctor of Philosophy (Electronic Theses and Dissertations for Graduate School, 2008).

G. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer, 2000), pp. 195–211.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Cross section of D-shaped hole double-cladding fiber SPR temperature sensor and the proposed setup for loss spectrum interrogation.
Fig. 2.
Fig. 2. Electric field distribution (a) of y polarization and (b) of x polarization.
Fig. 3.
Fig. 3. Real part of effective refractive index of fiber core mode and SPP mode and the loss spectrum of fiber SPR sensor.
Fig. 4.
Fig. 4. Influence of rd on the loss spectrum. (a) rd=5  μm, (b) rd=5.5  μm, (c) rd=6  μm, and (d) the fitted results of resonant wavelength of y polarization with different temperatures, where the blue, red, and black markers are the simulation results.
Fig. 5.
Fig. 5. Influence of hAu on the loss spectrum. (a) hAu=47  nm, (b) hAu=57  nm, (c) hAu=67  nm, and (d) the fitted results of resonant wavelength of y polarization with different temperatures, where the blue, red, and black markers are the simulation results.
Fig. 6.
Fig. 6. (a) Loss spectra with different temperatures of y polarization and (b) fitted result of resonant wavelength with different temperatures, where the blue squares are the simulation results and the red line represents the fitted line.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϵAu(T)=ϵωd(T)2ω2ωωc(T)i,
ndet=ndet0+(TT0)dn/dT,
Sλ=dλres(T)dT[nm/°C],

Metrics