Abstract

Two-dimensional (2D) graphite carbon nitride (g-C3N4) nanosheets have been successfully used as a saturable absorber (SA) in a passively Q-switched Nd:LLF laser at 1.3 μm for the first time, to the best of our knowledge. Under an incident pump power of 9.97 W, the shortest pulse duration of 275 ns was acquired with output power of 0.96 W and pulse repetition rate of 154 kHz, resulting in a pulse energy of 6.2 μJ. In addition, the saturable absorption behaviors of zero-dimensional 12 nm g-C3N4 nanoparticles (g-C3N4-NPs) and three-dimensional ordered mesoporous g-C3N4 (mpg-C3N4) were also observed, although their morphology and structure were quite different from 2D g-C3N4. The experimental results introduce the potential application of g-C3N4 nanomaterials as SAs in Q-switched lasers.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Graphitic C3N4 as a new saturable absorber for the mid-infrared spectral range

Mingqi Fan, Tao Li, Guiqiu Li, Houyi Ma, Shengzhi Zhao, Kejian Yang, and Christian Kränkel
Opt. Lett. 42(2) 286-289 (2017)

WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm

Xinxing Liu, Shuaiyi Zhang, Zhengyu Yan, Lei Guo, Xiaoyan Fan, Fei Lou, Maorong Wang, Peng Gao, Guanghai Guo, Tao Li, Kejian Yang, Jian Li, and Jianqiu Xu
Opt. Mater. Express 8(5) 1213-1220 (2018)

Diode-pumped passively Q-switched Nd:LuVO4 laser at 1.34μm with a V3+:YAG saturable absorber

Fengqin Liu, Jingliang He, Baitao Zhang, Jinlong Xu, Xiaolong Dong, Kejian Yang, Hairui Xia, and Huaijin Zhang
Opt. Express 16(16) 11759-11763 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  2. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  3. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  4. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
    [Crossref]
  5. R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
    [Crossref]
  6. Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
    [Crossref]
  7. T. T. Kajava and A. L. Gaeta, “Q switching of a diode-pumped Nd:YAG laser with GaAs,” Opt. Lett. 21, 1244–1246 (1996).
    [Crossref]
  8. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
    [Crossref]
  9. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  10. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
    [Crossref]
  11. X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
    [Crossref]
  12. X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
    [Crossref]
  13. S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
    [Crossref]
  14. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
    [Crossref]
  15. F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
    [Crossref]
  16. X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
    [Crossref]
  17. X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
    [Crossref]
  18. R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, “Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts,” Angew. Chem. Int. Ed. 54, 2406–2409 (2015).
    [Crossref]
  19. B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
    [Crossref]

2016 (1)

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

2015 (4)

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, “Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts,” Angew. Chem. Int. Ed. 54, 2406–2409 (2015).
[Crossref]

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

2013 (1)

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

2012 (1)

2010 (1)

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

2009 (5)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
[Crossref]

X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
[Crossref]

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2006 (1)

F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

1998 (1)

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

1996 (1)

1995 (1)

Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

Antonietti, M.

X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
[Crossref]

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
[Crossref]

F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Basko, D. M.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bonaccorso, F.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Cai, F.

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

Carlsson, J. M.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Chen, T.

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Chen, X.

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
[Crossref]

X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
[Crossref]

Chen, Y.

Conroy, R. S.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

Dai, S.

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

Denisov, I. A.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

Domen, K.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Du, P.

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

Fan, M.

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

Ferrari, A. C.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Fischer, A.

F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
[Crossref]

Fu, X.

X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
[Crossref]

X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
[Crossref]

Gaeta, A. L.

Gao, X.

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Goettmann, F.

F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
[Crossref]

Hasan, T.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Hu, B.

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

Ishitani, O.

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, “Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts,” Angew. Chem. Int. Ed. 54, 2406–2409 (2015).
[Crossref]

Jiao, X.

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Kajava, T. T.

Kalisky, Y.

Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

Kelleher, E. J. R.

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Kuriki, R.

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, “Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts,” Angew. Chem. Int. Ed. 54, 2406–2409 (2015).
[Crossref]

Li, Z.

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

Liu, Q.

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Lu, S.

Ma, H.

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Maeda, K.

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, “Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts,” Angew. Chem. Int. Ed. 54, 2406–2409 (2015).
[Crossref]

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Malyarevich, A. M.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

Mikhailov, V. P.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Pan, B.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

Popa, D.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Privitera, G.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Sekizawa, K.

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, “Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts,” Angew. Chem. Int. Ed. 54, 2406–2409 (2015).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shi, W.

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

Sinclair, B. D.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

Song, C.

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

Sun, Z. P.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Takanabe, K.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Tang, D.

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Thomas, A.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
[Crossref]

F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
[Crossref]

Torrisi, F.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, F. Q.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, H.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

Wang, X.

X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
[Crossref]

X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
[Crossref]

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z.

Wen, S.

Woodward, R. I.

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

Wu, Q.

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

Xie, X.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

Xie, Y.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

Xin, G.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Xu, X.

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Yan, S.

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

Yan, X.

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, S.

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

Yumashev, K. V.

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

Zhang, H.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Zhang, J.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
[Crossref]

Zhang, L.

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Zhang, X.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

Zhao, C.

Zhu, J.

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

Zhu, W.

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Zou, Y.

Zou, Z.

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

ACS Appl. Mater. Int. (1)

B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, and W. Shi, “Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation,” ACS Appl. Mater. Int. 7, 18247–18256 (2015).
[Crossref]

ACS Nano (1)

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Adv. Funct. Mater. (2)

X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, “Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement,” Adv. Funct. Mater. 26, 1719–1728 (2016).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, “Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material,” Adv. Mater. 21, 1609–1612 (2009).
[Crossref]

Angew. Chem. Int. Ed. (2)

R. Kuriki, K. Sekizawa, O. Ishitani, and K. Maeda, “Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts,” Angew. Chem. Int. Ed. 54, 2406–2409 (2015).
[Crossref]

F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, “Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene,” Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
[Crossref]

Appl. Phys. B. (1)

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG-a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B. 67, 555–558 (1998).
[Crossref]

Appl. Sci. (1)

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

J. Am. Chem. Soc. (2)

X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, “Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light,” J. Am. Chem. Soc. 131, 11658–11659 (2009).
[Crossref]

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2013).
[Crossref]

Langmuir (1)

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

Nat. Mater. (2)

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

RSC Adv. (1)

X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, and T. Chen, “Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation,” RSC Adv. 5, 76963–76972 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. TEM images of (a) bulk g - C 3 N 4 and (b) exfoliated g - C 3 N 4 nanosheets, (c) AFM image of g - C 3 N 4 nanosheets deposited on copper grids and (d) the corresponding height image, and (e) TEM image of 12 nm g - C 3 N 4 NPs and (f) high-magnification TEM image of mpg - C 3 N 4 . Inset: TEM image of mpg - C 3 N 4 .
Fig. 2.
Fig. 2. (a) Idealized Kekule model of g - C 3 N 4 crystal structure viewed along the c axis and the slightly tilted b axis, and (b) XRD patterns of various g - C 3 N 4 samples.
Fig. 3.
Fig. 3. (a) Infrared transmittance of various g - C 3 N 4 powders, and (b) nonlinear transmission of 12 nm g - C 3 N 4 , g - C 3 N 4 nanosheets and mpg g - C 3 N 4 measured by 1.06 μm AO Q -switched Nd : YVO 4 laser.
Fig. 4.
Fig. 4. Schematic setup of diode-pumped Nd:LLF laser.
Fig. 5.
Fig. 5. Passively Q -switched characteristics: (a) average output power, (b) pulse duration, (c) pulse repetition rate, and (d) single pulse energy as a function of incident pump power.
Fig. 6.
Fig. 6. Temporal profile of pulse laser: (a) typical pulse train, (b) temporal profile of a single pulse, and (c) laser spectrum.

Metrics