Abstract

We demonstrate an all fiber passively mode-locked laser emitting a radially polarized beam by using a few-mode fiber Bragg grating to achieve mode selection and spectrum filtering. An offset splicing of single-mode fiber with four-mode fiber is utilized as a mode coupler in the laser cavity. Carbon nanotubes are introduced into the laser cavity as the saturable absorber to achieve self-start mode locking. The laser operates at 1547.5 nm with a narrow spectrum width of 0.3 nm at 30 dB. The emitted mode-locked pulses have a duration of 22.73 ps and repetition of 10.61 MHz. A radially polarized beam has been obtained with high mode purity by adjusting the polarization in the laser cavity.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes

Chang Su Jun, Ju Hee Im, Sang Hwa Yoo, Sun Young Choi, Fabian Rotermund, Dong-Il Yeom, and Byoung Yoon Kim
Opt. Express 19(20) 19775-19780 (2011)

Actively mode-locked all fiber laser with cylindrical vector beam output

Yong Zhou, Anting Wang, Chun Gu, Biao Sun, Lixin Xu, Feng Li, Dick Chung, and Qiwen Zhan
Opt. Lett. 41(3) 548-550 (2016)

High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  2. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [Crossref]
  3. M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
    [Crossref]
  4. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
    [Crossref]
  5. D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402–407 (2007).
    [Crossref]
  6. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [Crossref]
  7. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
  8. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
  9. Z. E. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
    [Crossref]
  10. R. Zhou, J. W. Haus, P. E. Powers, and Q. Zhan, “Vectorial fiber laser using intracavity axial birefringence,” Opt. Express 18, 10839–10847 (2010).
    [Crossref]
  11. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
    [Crossref]
  12. L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
    [Crossref]
  13. H. Jianhong, D. Jing, C. Yongge, W. Wen, Z. Hui, L. Jinhui, and L. Wenxiong, “Passively mode-locked radially polarized laser based on ceramic Nd:YAG rod,” Opt. Express 19, 2120–2125 (2011).
    [Crossref]
  14. B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38, 667–669 (2013).
    [Crossref]
  15. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37, 464–466 (2012).
    [Crossref]
  16. Z. Lin, A. Wang, L. Xu, B. Sun, C. Gu, and H. Ming, “Analysis of generating cylindrical vector beams using a few-mode fiber Bragg grating,” J. Lightwave Technol. 30, 3540–3544 (2012).
    [Crossref]
  17. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18, 230–235 (2000).
    [Crossref]
  18. J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
  19. B. Sun, A. Wang, C. Gu, G. Chen, L. Xu, D. Chung, and Q. Zhan, “Mode-locked all-fiber laser producing radially polarized rectangular pulses,” Opt. Lett. 40, 1691–1694 (2015).
    [Crossref]
  20. Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 41, 548–550 (2016).
    [Crossref]
  21. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  22. Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).
  23. C. K. Nielsen, “Mode locked fiber lasers: theoretical and experimental developments,” Ph.D. dissertation (Aarhus University, 2006).

2016 (1)

2015 (1)

2014 (2)

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).

2013 (4)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, and Q. Zhan, “Transverse mode switchable fiber laser through wavelength tuning,” Opt. Lett. 38, 667–669 (2013).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

2009 (1)

2007 (3)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[Crossref]

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402–407 (2007).
[Crossref]

2005 (1)

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

2002 (1)

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

2000 (1)

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).

1997 (1)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Achiba, Y.

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

Bai, J.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Biener, G.

Bomzon, Z. E.

Bouhelier, A.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Bruyant, A.

Burger, L.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Chen, G.

Chen, X.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Chiang, K. S.

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).

Chung, D.

Colas des Francs, G.

Djambova, T. V.

Dong, J.

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).

Forbes, A.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Gong, L.

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

Gu, C.

Gupta, D. N.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402–407 (2007).
[Crossref]

Gupta, S.

Hasman, E.

Haus, J. W.

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Huang, C.

Hui, Z.

Ignatovich, F.

Jianhong, H.

Jing, D.

Jinhui, L.

Kant, N.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402–407 (2007).
[Crossref]

Kataura, H.

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

Kim, D. E.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402–407 (2007).
[Crossref]

Kleiner, V.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Li, D.

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

Li, F.

Li, L.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Li, Y. M.

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

Lin, Z.

Litvin, I.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).

Ming, H.

Mizunami, T.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).

Ngcobo, S.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Nielsen, C. K.

C. K. Nielsen, “Mode locked fiber lasers: theoretical and experimental developments,” Ph.D. dissertation (Aarhus University, 2006).

Niiho, T.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).

Novotny, L.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
[Crossref]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Powers, P. E.

Qi, M.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Ren, Z.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).

Rozhin, A. G.

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

Sakakibara, Y.

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Suk, H.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402–407 (2007).
[Crossref]

Sun, B.

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Tokumoto, M.

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Wang, A.

Wang, Z. Q.

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

Weeber, J. C.

Wen, W.

Wenxiong, L.

Xu, L.

Yongge, C.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Zhan, Q.

Zheng, X.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Zhong, M. C.

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

Zhou, J. H.

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

Zhou, R.

Zhou, Y.

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).

Appl. Phys. Express (1)

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6, 082701 (2013).
[Crossref]

Appl. Phys. Lett. (1)

M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105, 181112 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).

J. Lightwave Technol. (2)

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).

Jpn. J. Appl. Phys. (1)

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinyl alcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005).

Nat. Commun. (1)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Lett. A (1)

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402–407 (2007).
[Crossref]

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Other (1)

C. K. Nielsen, “Mode locked fiber lasers: theoretical and experimental developments,” Ph.D. dissertation (Aarhus University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the proposed fiber laser and detection devices.
Fig. 2.
Fig. 2. Reflection spectrum of the four-mode FBG with hybrid mode injection.
Fig. 3.
Fig. 3. (a) Autocorrelation trace of single pulse and (b) RF spectrum of the mode locking laser.
Fig. 4.
Fig. 4. Pulse train of the passively mode-locked laser in (a) large time range and (b) short time range.
Fig. 5.
Fig. 5. Optical spectrum of the mode-locked laser (blue solid line), CW operation (red solid line), and the four mode reflection (black dashed line).
Fig. 6.
Fig. 6. Intensity distribution of the (a) RPB output; (b)–(e) show the intensity distributions of the output beam after passing through a linear polarizer. Arrow indicates the orientation of the linear polarizer.
Fig. 7.
Fig. 7. Function fitting of the output beam intensity distribution. Black circles represents the measured intensity, red line represents the function fitting.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Itotal=m·J12(ra)+n·J02(ra),

Metrics