Abstract

A novel magnetic field sensing system based on the fiber loop ring-down technique is proposed in this paper. In the fiber loop, a U-bent single-mode-fiber structure coated with magnetic fluid (MF) serves as the sensing head, and an erbium-doped fiber amplifier (EDFA) is introduced to compensate for the intrinsic loss of the cavity. The ring-down time of the system varies with the change of applied magnetic field due to the tunable absorption coefficient and refractive index of the MF. Therefore, measurement of the magnetic field can be realized by monitoring the ring-down time. The experimental results show that the performance of the system is extremely dependent on the interrogation wavelength, because both the gain of the EDFA and the loss of the sensing head are wavelength dependent. We found that at the optimal wavelength, the ratio of the gain to loss attained its maximum. The sensing system was experimentally demonstrated and a sensitivity of 0.5951  μs/Oe was achieved.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid

Tao Shen, Yue Feng, Binchao Sun, and Xinlao Wei
Appl. Opt. 55(4) 673-678 (2016)

Temperature-compensated magnetic field sensing with a dual-ring structure consisting of microfiber coupler-Sagnac loop and fiber Bragg grating-assisted resonant cavity

Fangfang Wei, Dejun Liu, Arun Kumar Mallik, Gerald Farrell, Qiang Wu, Gang-Ding Peng, and Yuliya Semenova
Appl. Opt. 58(9) 2334-2339 (2019)

Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing

Shaohua Dong, Shengli Pu, and Haotian Wang
Opt. Express 22(16) 19108-19116 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Wang, “Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives,” Sensors 9, 7595–7621 (2009).
    [Crossref]
  2. W. Di, Z. Yong, and W. Qi, “SMF taper evanescent field-based RI sensor combined with fiber loop ring down technology,” IEEE Photon. Technol. Lett. 27, 1802–1805 (2015).
    [Crossref]
  3. N. Ni, C. Chan, L. Xia, and P. Shum, “Fiber cavity ring-down refractive index sensor,” IEEE Photon. Technol. Lett. 20, 1351–1353 (2008).
    [Crossref]
  4. M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
    [Crossref]
  5. C. Wang and C. Herath, “High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber,” Opt. Lett. 35, 1629–1631 (2010).
    [Crossref]
  6. W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
    [Crossref]
  7. N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
    [Crossref]
  8. C. Wang and S. T. Scherrer, “Fiber ringdown pressure sensors,” Opt. Lett. 29, 352–354 (2004).
    [Crossref]
  9. W. C. Wong, C. C. Chan, H. Gong, and K. C. Leong, “Mach-Zehnder photonic crystal interferometer in cavity ring-down loop for curvature measurement,” IEEE Photon. Technol. Lett. 23, 795–797 (2011).
    [Crossref]
  10. H. Berberoglu and H. Altan, “A simple single-mode fiber loss measurement scheme in the C-band based on fiber loop-cavity ringdown spectroscopy,” Opt. Commun. 317, 29–33 (2014).
    [Crossref]
  11. Y. Zhao, J. Chang, J. Ni, Q. Wang, T. Liu, C. Wang, P. Wang, G. Lv, and G. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
    [Crossref]
  12. Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
    [Crossref]
  13. T. Shen, Y. Feng, B. Sun, and X. Wei, “Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid,” Appl. Opt. 55, 673–678 (2016).
    [Crossref]
  14. P. Shengli and D. Shaohua, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints,” IEEE Photon. J. 6, 5300206 (2014).
  15. J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
    [Crossref]
  16. Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38, 3999–4001 (2013).
    [Crossref]
  17. R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39, 6293–6296 (2014).
    [Crossref]
  18. T. Liu, Y. Chen, Q. Han, and X. Lu, “Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photon. J. 6, 5300307 (2014).
  19. X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightwave Technol. 33, 3351–3356 (2015).
    [Crossref]
  20. G. Stewart, K. Atherton, and B. Culshaw, “Cavity-enhanced spectroscopy in fiber cavities,” Opt. Lett. 29, 442–444 (2004).
    [Crossref]

2016 (1)

2015 (3)

X. Zhang and W. Peng, “Bent fiber interferometer,” J. Lightwave Technol. 33, 3351–3356 (2015).
[Crossref]

W. Di, Z. Yong, and W. Qi, “SMF taper evanescent field-based RI sensor combined with fiber loop ring down technology,” IEEE Photon. Technol. Lett. 27, 1802–1805 (2015).
[Crossref]

Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
[Crossref]

2014 (6)

T. Liu, Y. Chen, Q. Han, and X. Lu, “Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photon. J. 6, 5300307 (2014).

Y. Zhao, J. Chang, J. Ni, Q. Wang, T. Liu, C. Wang, P. Wang, G. Lv, and G. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39, 6293–6296 (2014).
[Crossref]

H. Berberoglu and H. Altan, “A simple single-mode fiber loss measurement scheme in the C-band based on fiber loop-cavity ringdown spectroscopy,” Opt. Commun. 317, 29–33 (2014).
[Crossref]

P. Shengli and D. Shaohua, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints,” IEEE Photon. J. 6, 5300206 (2014).

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

2013 (1)

2012 (1)

W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
[Crossref]

2011 (1)

W. C. Wong, C. C. Chan, H. Gong, and K. C. Leong, “Mach-Zehnder photonic crystal interferometer in cavity ring-down loop for curvature measurement,” IEEE Photon. Technol. Lett. 23, 795–797 (2011).
[Crossref]

2010 (3)

C. Wang and C. Herath, “High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber,” Opt. Lett. 35, 1629–1631 (2010).
[Crossref]

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
[Crossref]

2009 (1)

C. Wang, “Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives,” Sensors 9, 7595–7621 (2009).
[Crossref]

2008 (1)

N. Ni, C. Chan, L. Xia, and P. Shum, “Fiber cavity ring-down refractive index sensor,” IEEE Photon. Technol. Lett. 20, 1351–1353 (2008).
[Crossref]

2004 (2)

Altan, H.

H. Berberoglu and H. Altan, “A simple single-mode fiber loss measurement scheme in the C-band based on fiber loop-cavity ringdown spectroscopy,” Opt. Commun. 317, 29–33 (2014).
[Crossref]

Atherton, K.

Berberoglu, H.

H. Berberoglu and H. Altan, “A simple single-mode fiber loss measurement scheme in the C-band based on fiber loop-cavity ringdown spectroscopy,” Opt. Commun. 317, 29–33 (2014).
[Crossref]

Chan, C.

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

N. Ni, C. Chan, L. Xia, and P. Shum, “Fiber cavity ring-down refractive index sensor,” IEEE Photon. Technol. Lett. 20, 1351–1353 (2008).
[Crossref]

Chan, C. C.

W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
[Crossref]

W. C. Wong, C. C. Chan, H. Gong, and K. C. Leong, “Mach-Zehnder photonic crystal interferometer in cavity ring-down loop for curvature measurement,” IEEE Photon. Technol. Lett. 23, 795–797 (2011).
[Crossref]

Chang, J.

Chen, Y.

T. Liu, Y. Chen, Q. Han, and X. Lu, “Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photon. J. 6, 5300307 (2014).

Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38, 3999–4001 (2013).
[Crossref]

Culshaw, B.

Di, W.

W. Di, Z. Yong, and W. Qi, “SMF taper evanescent field-based RI sensor combined with fiber loop ring down technology,” IEEE Photon. Technol. Lett. 27, 1802–1805 (2015).
[Crossref]

Dong, X.

W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
[Crossref]

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

Feng, Y.

Gao, R.

Gong, H.

W. C. Wong, C. C. Chan, H. Gong, and K. C. Leong, “Mach-Zehnder photonic crystal interferometer in cavity ring-down loop for curvature measurement,” IEEE Photon. Technol. Lett. 23, 795–797 (2011).
[Crossref]

Han, Q.

T. Liu, Y. Chen, Q. Han, and X. Lu, “Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photon. J. 6, 5300307 (2014).

Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38, 3999–4001 (2013).
[Crossref]

Herath, C.

Hu, H.

Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
[Crossref]

Jiang, M.

M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
[Crossref]

Jiang, Y.

Lan, X.

Leong, K. C.

W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
[Crossref]

W. C. Wong, C. C. Chan, H. Gong, and K. C. Leong, “Mach-Zehnder photonic crystal interferometer in cavity ring-down loop for curvature measurement,” IEEE Photon. Technol. Lett. 23, 795–797 (2011).
[Crossref]

Li, J.

Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
[Crossref]

Lin, W.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

Liu, B.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
[Crossref]

Liu, T.

Liu, X.

Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
[Crossref]

Liu, Y.

M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
[Crossref]

Lu, X.

T. Liu, Y. Chen, Q. Han, and X. Lu, “Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photon. J. 6, 5300307 (2014).

Lv, G.

Lv, R.

Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
[Crossref]

Miao, Y.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

Ni, J.

Ni, N.

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

N. Ni, C. Chan, L. Xia, and P. Shum, “Fiber cavity ring-down refractive index sensor,” IEEE Photon. Technol. Lett. 20, 1351–1353 (2008).
[Crossref]

Peng, G.

Peng, W.

Qi, W.

W. Di, Z. Yong, and W. Qi, “SMF taper evanescent field-based RI sensor combined with fiber loop ring down technology,” IEEE Photon. Technol. Lett. 27, 1802–1805 (2015).
[Crossref]

Scherrer, S. T.

Shao, L.

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

Shaohua, D.

P. Shengli and D. Shaohua, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints,” IEEE Photon. J. 6, 5300206 (2014).

Shen, T.

Shengli, P.

P. Shengli and D. Shaohua, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints,” IEEE Photon. J. 6, 5300206 (2014).

Shum, P.

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

N. Ni, C. Chan, L. Xia, and P. Shum, “Fiber cavity ring-down refractive index sensor,” IEEE Photon. Technol. Lett. 20, 1351–1353 (2008).
[Crossref]

Song, B.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

Stewart, G.

Sun, B.

Wang, C.

Wang, P.

Wang, Q.

Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
[Crossref]

Y. Zhao, J. Chang, J. Ni, Q. Wang, T. Liu, C. Wang, P. Wang, G. Lv, and G. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]

Wei, X.

Wong, W.

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

Wong, W. C.

W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
[Crossref]

W. C. Wong, C. C. Chan, H. Gong, and K. C. Leong, “Mach-Zehnder photonic crystal interferometer in cavity ring-down loop for curvature measurement,” IEEE Photon. Technol. Lett. 23, 795–797 (2011).
[Crossref]

Wu, J.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

Xia, L.

N. Ni, C. Chan, L. Xia, and P. Shum, “Fiber cavity ring-down refractive index sensor,” IEEE Photon. Technol. Lett. 20, 1351–1353 (2008).
[Crossref]

Xiao, H.

Yao, J.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

Yong, Z.

W. Di, Z. Yong, and W. Qi, “SMF taper evanescent field-based RI sensor combined with fiber loop ring down technology,” IEEE Photon. Technol. Lett. 27, 1802–1805 (2015).
[Crossref]

Zhang, H.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

Zhang, K.

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

Zhang, Q.

M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
[Crossref]

Zhang, W.

M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
[Crossref]

Zhang, X.

Zhao, Y.

Zhou, W.

W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014).
[Crossref]

IEEE Photon. J. (2)

T. Liu, Y. Chen, Q. Han, and X. Lu, “Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photon. J. 6, 5300307 (2014).

P. Shengli and D. Shaohua, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints,” IEEE Photon. J. 6, 5300206 (2014).

IEEE Photon. Technol. Lett. (3)

W. Di, Z. Yong, and W. Qi, “SMF taper evanescent field-based RI sensor combined with fiber loop ring down technology,” IEEE Photon. Technol. Lett. 27, 1802–1805 (2015).
[Crossref]

N. Ni, C. Chan, L. Xia, and P. Shum, “Fiber cavity ring-down refractive index sensor,” IEEE Photon. Technol. Lett. 20, 1351–1353 (2008).
[Crossref]

W. C. Wong, C. C. Chan, H. Gong, and K. C. Leong, “Mach-Zehnder photonic crystal interferometer in cavity ring-down loop for curvature measurement,” IEEE Photon. Technol. Lett. 23, 795–797 (2011).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (3)

Q. Wang, X. Liu, Y. Zhao, R. Lv, H. Hu, and J. Li, “Magnetic field sensing based on fiber loop ring-down spectroscopy and etched fiber interacting with magnetic fluid,” Opt. Commun. 356, 628–633 (2015).
[Crossref]

H. Berberoglu and H. Altan, “A simple single-mode fiber loss measurement scheme in the C-band based on fiber loop-cavity ringdown spectroscopy,” Opt. Commun. 317, 29–33 (2014).
[Crossref]

M. Jiang, W. Zhang, Q. Zhang, Y. Liu, and B. Liu, “Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy,” Opt. Commun. 283, 249–253 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Sens. Actuators A (1)

N. Ni, C. Chan, W. Wong, L. Shao, X. Dong, and P. Shum, “Cavity ring-down long period grating pressure sensor,” Sens. Actuators A 158, 207–211 (2010).
[Crossref]

Sens. Actuators B (1)

W. C. Wong, W. Zhou, C. C. Chan, X. Dong, and K. C. Leong, “Cavity ringdown refractive index sensor using photonic crystal fiber interferometer,” Sens. Actuators B 161, 108–113 (2012).
[Crossref]

Sensors (1)

C. Wang, “Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives,” Sensors 9, 7595–7621 (2009).
[Crossref]

Supplementary Material (6)

NameDescription
» Visualization 1: AVI (1102 KB)      At 1555 nm, the evolution of output signal with the increasing of the gain of EDFA
» Visualization 2: AVI (1023 KB)      At 1560 nm, the evolution of output signal with the increasing of the gain of EDFA
» Visualization 3: AVI (1035 KB)      At 1565 nm, the evolution of output signal with the increasing of the gain of EDFA
» Visualization 4: AVI (1728 KB)      At 1570 nm, the evolution of output signal with the increasing of the gain of EDFA
» Visualization 5: AVI (1585 KB)      At 1575 nm, the evolution of output signal with the increasing of the gain of EDFA
» Visualization 6: AVI (1330 KB)      At 1580 nm, the evolution of output signal with the increasing of the gain of EDFA

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the sensing system.
Fig. 2.
Fig. 2. Schematic of the sensing head based on an MF-coated U-bent fiber structure.
Fig. 3.
Fig. 3. Schematic diagrams for measuring (a) the gain characteristic of the EDFA module depending on wavelength and (b) the transmission spectrum of the sensing head in the MF under 0 Oe. OPM, optical powermeter; BBS, broadband source (Lightcomm Tecnologia Ltd.); OSA, optical spectrum analyzer (Advantest Q8384).
Fig. 4.
Fig. 4. Measured transmittance spectrum of the sensing head and the gain characteristic curve of the EDFA module.
Fig. 5.
Fig. 5. (a) Spectral response of the sensing head to the applied magnetic field. (b) The transmittance change at 1575 nm depending on H .
Fig. 6.
Fig. 6. Output decay trains and the corresponding exponent fittings of the peaks under H of (a) 0 and (b) 250 Oe.
Fig. 7.
Fig. 7. Measured ring-down time depending on H . Inset: the statistics and fitting results.

Tables (1)

Tables Icon

Table 1. Values of G nor , V , N , and Q at Different Wavelengths

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 exp ( c n l Ψ t ) ,
Ψ = A G + V ,
τ = n l c ( A G + V ) .
V ( λ ) = I leak / I + { 1 [ I core + I clad e η α L + 2 I core I clad e η α L cos ϕ ] / I } ,
ϕ = 2 π λ ( n eff _ core n eff _ clad ) L ,
V min = 1 m σ τ τ ¯ ,

Metrics