Abstract

We demonstrated stable midinfrared (MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked 161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum (SC) with an average power of 205 mW was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG)

A. Okamura, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa
J. Opt. Soc. Am. B 32(3) 400-406 (2015)

Ultralow-repetition-rate, high-energy, polarization-maintaining, Er-doped, ultrashort-pulse fiber laser using single-wall-carbon-nanotube saturable absorber

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh
Opt. Express 18(20) 20673-20680 (2010)

Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film

N. Nishizawa, Y. Nozaki, E. Itoga, H. Kataura, and Y. Sakakibara
Opt. Express 19(22) 21874-21879 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  2. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [Crossref]
  3. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8  um from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
    [Crossref]
  4. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33, 2671–2673 (2008).
    [Crossref]
  5. F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett. 38, 2360–2362 (2013).
    [Crossref]
  6. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 to 4.4  μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
    [Crossref]
  7. S. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett. 37, 2232–2234 (2012).
    [Crossref]
  8. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5  W frequency comb at 2.8–4.8  μm,” Opt. Lett. 34, 1330–1332 (2009).
    [Crossref]
  9. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [Crossref]
  10. K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38, 1191–1193 (2013).
    [Crossref]
  11. N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, “250-MHz synchronously pumped optical parametric oscillator at 2.25–2.6  μm and 4.1–4.9  μm,” Opt. Express 20, 22042–22047 (2012).
    [Crossref]
  12. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
    [Crossref]
  13. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16, 9429–9435 (2008).
    [Crossref]
  14. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 17, 20233–20241 (2009).
    [Crossref]
  15. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
    [Crossref]
  16. N. Nishizawa, “Generation and application of high-quality supercontinuum sources,” Opt. Fiber Technol. 18, 394–402 (2012).
    [Crossref]
  17. N. Nishizawa, “Ultrashort pulse fiber lasers and their applications,” Jpn. J. Appl. Phys. 53, 090101 (2014).
    [Crossref]
  18. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [Crossref]
  19. Y. Deng, F. Lu, and W. H. Knox, “Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications,” Opt. Express 13, 4589–4593 (2005).
    [Crossref]
  20. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2000).
  21. N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” J. Appl. Phys. 40, L365–L367 (2001).
    [Crossref]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  23. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  24. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J. Opt. Soc. Am. B 21, 1969–1980 (2004).
    [Crossref]
  25. N. Nishizawa and T. Goto, “Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,” Opt. Express 8, 328–334 (2001).
    [Crossref]
  26. A. Okamura, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG),” J. Opt. Soc. Am. B 32, 400–406 (2015).
    [Crossref]
  27. L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

2015 (1)

2014 (1)

N. Nishizawa, “Ultrashort pulse fiber lasers and their applications,” Jpn. J. Appl. Phys. 53, 090101 (2014).
[Crossref]

2013 (2)

2012 (6)

2011 (1)

2009 (2)

2008 (3)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

2001 (2)

N. Nishizawa and T. Goto, “Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,” Opt. Express 8, 328–334 (2001).
[Crossref]

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” J. Appl. Phys. 40, L365–L367 (2001).
[Crossref]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Adler, F.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Balslev-Clausen, D.

Bethge, J.

Biegert, J.

Byer, R. L.

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Coluccelli, N.

Cossel, K. C.

Deng, Y.

Diddams, S. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Eikema, K. S. E.

Erny, C.

Fermann, M. E.

Fonnum, H.

Galzerano, G.

Gambetta, A.

Gatti, D.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Goto, T.

Haakestad, M.

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hartl, I.

Holzwarth, R.

Hori, T.

Hundertmark, H.

Ideno, A.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Iguchi, T.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Itoga, E.

Itoh, K.

Jiang, J.

Jin, L.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Johnson, T. A.

Kataura, H.

Keller, U.

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8  um from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Kirchner, M. S.

Knox, W. H.

Kolomenskii, A. A.

Kühlke, D.

Laporta, P.

Lee, K. F.

Leindecker, N.

Leitenstorfer, A.

Lu, F.

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Marandi, A.

Marangoni, M.

Mohr, C.

Moutzouris, K.

Neely, T. W.

Nishizawa, N.

A. Okamura, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG),” J. Opt. Soc. Am. B 32, 400–406 (2015).
[Crossref]

N. Nishizawa, “Ultrashort pulse fiber lasers and their applications,” Jpn. J. Appl. Phys. 53, 090101 (2014).
[Crossref]

N. Nishizawa, “Generation and application of high-quality supercontinuum sources,” Opt. Fiber Technol. 18, 394–402 (2012).
[Crossref]

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 17, 20233–20241 (2009).
[Crossref]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16, 9429–9435 (2008).
[Crossref]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J. Opt. Soc. Am. B 21, 1969–1980 (2004).
[Crossref]

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” J. Appl. Phys. 40, L365–L367 (2001).
[Crossref]

N. Nishizawa and T. Goto, “Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,” Opt. Express 8, 328–334 (2001).
[Crossref]

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Oh-hara, T.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Okamura, A.

Omoda, E.

Omori, A.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Ramponi, R.

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Ruehl, S. A.

Sakakibara, Y.

Sato, A.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schuessler, H. A.

Schunemann, P. G.

Seno, Y.

Senoo, Y.

Sonnenschein, V.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Strohaber, J.

Sumimura, K.

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Thorpe, M. J.

Tomita, H.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Trebino, R.

R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2000).

Vodopyanov, K. L.

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Yamanaka, M.

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Yamashita, S.

Ye, J.

Yoshida, M.

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

Zhu, F.

Appl. Phys. B (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[Crossref]

Appl. Phys. Lett. (1)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm,” Appl. Phys. Lett. 81, 975–977 (2002).
[Crossref]

J. Appl. Phys. (1)

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” J. Appl. Phys. 40, L365–L367 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

N. Nishizawa, “Ultrashort pulse fiber lasers and their applications,” Jpn. J. Appl. Phys. 53, 090101 (2014).
[Crossref]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Opt. Express (7)

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref]

N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, “250-MHz synchronously pumped optical parametric oscillator at 2.25–2.6  μm and 4.1–4.9  μm,” Opt. Express 20, 22042–22047 (2012).
[Crossref]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16, 9429–9435 (2008).
[Crossref]

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 17, 20233–20241 (2009).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
[Crossref]

N. Nishizawa and T. Goto, “Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,” Opt. Express 8, 328–334 (2001).
[Crossref]

Y. Deng, F. Lu, and W. H. Knox, “Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications,” Opt. Express 13, 4589–4593 (2005).
[Crossref]

Opt. Fiber Technol. (1)

N. Nishizawa, “Generation and application of high-quality supercontinuum sources,” Opt. Fiber Technol. 18, 394–402 (2012).
[Crossref]

Opt. Lett. (7)

K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38, 1191–1193 (2013).
[Crossref]

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8  um from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
[Crossref]

A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33, 2671–2673 (2008).
[Crossref]

F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett. 38, 2360–2362 (2013).
[Crossref]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 to 4.4  μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
[Crossref]

S. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett. 37, 2232–2234 (2012).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5  W frequency comb at 2.8–4.8  μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (3)

R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2000).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, and N. Nishizawa, “Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm,” in Laser Congress (ASSL), OSA Technical Digest (Optical Society of America, 2016), paper ATh1A.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Experimental setup of MIR comb generation based on Er-doped, ultrashort pulse fiber laser system.
Fig. 2.
Fig. 2. Characteristics of output pulse from fiber laser: (a) temporal shape with instantaneous wavelength, (b) optical spectrum, and (c) RF spectra.
Fig. 3.
Fig. 3. Characteristics of output pulse from fiber amplifier: (a) optical spectrum and (b) temporal shape with instantaneous wavelength.
Fig. 4.
Fig. 4. Temporal shape and instantaneous wavelength of dispersion compensated ultrashort pulse with LMA-PCF.
Fig. 5.
Fig. 5. (a), (c), and (e) optical spectra and (b), (d), and (f) temporal shape of output pulse from highly nonlinear fiber for the length of 10, 20, and 30 cm.
Fig. 6.
Fig. 6. Observed optical spectrum of generated SC in PM-HN-DSF.
Fig. 7.
Fig. 7. Observed RF noise of fiber laser output and SC.
Fig. 8.
Fig. 8. Observed RF beat notes between cw-LD and (a) fiber laser at 1550 nm, (b) SC at 1550 nm, and (c) SC at 1680 nm.
Fig. 9.
Fig. 9. Spectrogram of generated SC in 20 cm of highly nonlinear fiber; (a) experimentally observed spectrogram with X-FROG, and (b) numerically obtained spectrogram with PG-FROG.
Fig. 10.
Fig. 10. Observed optical spectra of generated MIR comb at wavelengths of (a) 2.9 and (b) 4.9 μm.

Metrics