Abstract

We report on the design, realization, and output performance of a diode-pumped high-peak-power passively Q-switched Nd:YAG/Cr4+:YAG composite medium monolithic laser with four-beam output. The energy of a laser pulse was higher than 3 mJ with duration of 0.9 ns. The proposed system has the ability to choose independently the focus of each beam. Such a laser device can be used for multipoint ignition of an automobile gasoline engine, but could also be of interest for ignition in space propulsion or in turbulent conditions specific to aeronautics.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices

Nicolaie Pavel, Traian Dascalu, Gabriela Salamu, Mihai Dinca, Niculae Boicea, and Adrian Birtas
Opt. Express 23(26) 33028-33037 (2015)

Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition

Nicolaie Pavel, Masaki Tsunekane, and Takunori Taira
Opt. Express 19(10) 9378-9384 (2011)

Laser ignited engines: progress, challenges and prospects

Geoff Dearden and Tom Shenton
Opt. Express 21(S6) A1113-A1125 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33, 510–521 (1994).
    [Crossref]
  2. M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15, 947–953 (2005).
  3. J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photon. Rev. 4, 99–122 (2010).
    [Crossref]
  4. G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21, A1113–A1125 (2013).
    [Crossref]
  5. J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” in SAE International (1978), paper 780329.
  6. J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: a comparative study,” in SAE International (2008), paper 2008-01-0470.
  7. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
    [Crossref]
  8. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
    [Crossref]
  9. M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49, 454–461 (2013).
    [Crossref]
  10. C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen, “An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr4+:YAG crystal,” Opt. Express 23, 8162–8169 (2015).
    [Crossref]
  11. T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164-168 (2015).
    [Crossref]
  12. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
    [Crossref]
  13. Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22, 24655–24665 (2014).
    [Crossref]
  14. T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.
  15. N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23, 33028–33037 (2015).
    [Crossref]
  16. T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122, 508–510 (2000).
    [Crossref]
  17. M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
    [Crossref]
  18. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19, 9378–9384 (2011).
    [Crossref]
  19. E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
    [Crossref]
  20. Y. Ma, Y. He, X. Yu, X. Li, J. Li, R. Yan, J. Peng, X. Zhang, R. Sun, Y. Pan, and D. Chen, “Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping,” Opt. Express 23, 24955–24961 (2015).
    [Crossref]
  21. C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21, A1126–A1139 (2013).
    [Crossref]
  22. C. Manfleti and M. Börner, “Laser ignition systems for space propulsion applications,” in 4th Laser Ignition Conference (LIC’16), Yokohama, Japan, (May18–20, 2016), paper LIC6-3.
  23. L. Zimmer, R. George, and M. Orain, “Laser ignition in an aeronautical injector,” in 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April22–24, 2014, paper LIC3-6.
  24. J. J. Degnan, “Theory of the optimally coupled Q-switched lasers,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [Crossref]
  25. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [Crossref]

2015 (4)

2014 (2)

Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22, 24655–24665 (2014).
[Crossref]

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

2013 (3)

2011 (1)

2010 (2)

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

2009 (1)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[Crossref]

2007 (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

2005 (2)

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15, 947–953 (2005).

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

2000 (1)

T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122, 508–510 (2000).
[Crossref]

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[Crossref]

1994 (1)

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33, 510–521 (1994).
[Crossref]

1989 (1)

J. J. Degnan, “Theory of the optimally coupled Q-switched lasers,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

Birtas, A.

Boicea, N.

Börner, M.

C. Manfleti and M. Börner, “Laser ignition systems for space propulsion applications,” in 4th Laser Ignition Conference (LIC’16), Yokohama, Japan, (May18–20, 2016), paper LIC6-3.

Chang, Y. C.

Chen, D.

Chen, Y. F.

Cheng, H.

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

Cheng, H. P.

Cho, C. Y.

Clements, R. M.

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” in SAE International (1978), paper 780329.

Dale, J. D.

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” in SAE International (1978), paper 780329.

Dascalu, T.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164-168 (2015).
[Crossref]

N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23, 33028–33037 (2015).
[Crossref]

Dearden, G.

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21, A1113–A1125 (2013).
[Crossref]

J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: a comparative study,” in SAE International (2008), paper 2008-01-0470.

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[Crossref]

J. J. Degnan, “Theory of the optimally coupled Q-switched lasers,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[Crossref]

Dickinson, P.

J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: a comparative study,” in SAE International (2008), paper 2008-01-0470.

Dinca, M.

N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23, 33028–33037 (2015).
[Crossref]

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164-168 (2015).
[Crossref]

Fan, R.

Franz, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[Crossref]

George, R.

L. Zimmer, R. George, and M. Orain, “Laser ignition in an aeronautical injector,” in 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April22–24, 2014, paper LIC3-6.

He, Y.

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

Kofler, H.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

Kopecek, H.

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15, 947–953 (2005).

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

Kroupa, G.

C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21, A1126–A1139 (2013).
[Crossref]

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[Crossref]

Kuang, Z.

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

Lackner, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

Li, J.

Li, X.

Lyon, E.

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

Ma, Y.

Manfleti, C.

C. Manfleti and M. Börner, “Laser ignition systems for space propulsion applications,” in 4th Laser Ignition Conference (LIC’16), Yokohama, Japan, (May18–20, 2016), paper LIC6-3.

Manfletti, C.

Morishima, S.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.

Mullett, J.

J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: a comparative study,” in SAE International (2008), paper 2008-01-0470.

Orain, M.

L. Zimmer, R. George, and M. Orain, “Laser ignition in an aeronautical injector,” in 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April22–24, 2014, paper LIC3-6.

Page, V.

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

Pan, Y.

Pavel, N.

Peng, J.

Phuoc, T. X.

T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122, 508–510 (2000).
[Crossref]

Rooney, P. D.

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33, 510–521 (1994).
[Crossref]

Salamu, G.

N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23, 33028–33037 (2015).
[Crossref]

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164-168 (2015).
[Crossref]

Sandu, O.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164-168 (2015).
[Crossref]

Shenton, A.

J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: a comparative study,” in SAE International (2008), paper 2008-01-0470.

Shenton, A. T.

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

Shenton, T.

Smy, P. R.

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” in SAE International (1978), paper 780329.

Sugiura, A.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.

Sun, R.

Taguchi, N.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.

Taira, T.

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49, 454–461 (2013).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19, 9378–9384 (2011).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.

Tang, C. Y.

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

Tauer, J.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

Tesch, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

Tsunekane, M.

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49, 454–461 (2013).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19, 9378–9384 (2011).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.

Watkins, K. G.

J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: a comparative study,” in SAE International (2008), paper 2008-01-0470.

Weinrotter, M.

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15, 947–953 (2005).

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

Winkelhofer, E.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[Crossref]

Winter, F.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

Wintner, E.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15, 947–953 (2005).

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

Xu, X.

Yan, R.

Yu, X.

Zhang, X.

Zimmer, L.

L. Zimmer, R. George, and M. Orain, “Laser ignition in an aeronautical injector,” in 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April22–24, 2014, paper LIC3-6.

Combust. Flame (1)

T. X. Phuoc, “Single point versus multi-point laser ignition: Experimental measurements of combustion times and pressures,” Combust. Flame 122, 508–510 (2000).
[Crossref]

Exp. Therm. Fluid Sci. (1)

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29, 569–577 (2005).
[Crossref]

IEEE J. Quantum Electron. (4)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46, 277–284 (2010).
[Crossref]

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49, 454–461 (2013).
[Crossref]

J. J. Degnan, “Theory of the optimally coupled Q-switched lasers,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[Crossref]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[Crossref]

J. Phys. D (1)

E. Lyon, Z. Kuang, H. Cheng, V. Page, A. T. Shenton, and G. Dearden, “Multi-point laser spark generation for internal combustion engines using a spatial light modulator,” J. Phys. D 47, 475501 (2014).
[Crossref]

Laser Photon. Rev. (1)

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photon. Rev. 4, 99–122 (2010).
[Crossref]

Laser Phys. (1)

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. 15, 947–953 (2005).

Laser Phys. Lett. (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[Crossref]

Opt. Eng. (2)

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33, 510–521 (1994).
[Crossref]

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164-168 (2015).
[Crossref]

Other (5)

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” in SAE International (1978), paper 780329.

J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: a comparative study,” in SAE International (2008), paper 2008-01-0470.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, (April23–25, 2013), paper LIC3-1.

C. Manfleti and M. Börner, “Laser ignition systems for space propulsion applications,” in 4th Laser Ignition Conference (LIC’16), Yokohama, Japan, (May18–20, 2016), paper LIC6-3.

L. Zimmer, R. George, and M. Orain, “Laser ignition in an aeronautical injector,” in 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April22–24, 2014, paper LIC3-6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Laser configuration (patent pending) is shown. Each pump beam (①,②, ③, and ④) is directed from the corresponding optical fiber (F) to the composite Nd:YAG/Cr4+:YAG medium through a lens (L) and a folding prism (P). Four (1, 2, 3, and 4) laser beams are obtained.
Fig. 2.
Fig. 2. (a) Laser pulse energy Ep versus distance d2 between lens L and surface S1 of Nd:YAG. Data for two lenses, first with focal length f=4.0  mm placed at distances d1=3.4 and 4.4 mm from F, and the second with f=6.2  mm positioned at d1=4.9 and 5.9 mm from F, are shown. The inset is a sketch of the single pump-beam arrangement. (b) The corresponding pump pulse energy, Epump, is plotted.
Fig. 3.
Fig. 3. Laser pulse energy Ep versus laser beam radius ωg. Losses Li=0.01, and, for Cr4+:YAG, final transmission Tf of 0.94 and 0.98 were considered in simulations.
Fig. 4.
Fig. 4. (a) The module with the four folding prisms is presented. Each lens (L) position is indicated. P: prism. (b) A photo of the Nd:YAG/Cr4+:YAG laser with four-beam output is shown. The directions of laser beams 1, 2, 3, and 4 are given by the colored lines with arrows.
Fig. 5.
Fig. 5. Maximum temperature of surface S2 of Nd:YAG/Cr4+:YAG at central locations of beams 1 and 4 versus the pump pulse repetition rate.
Fig. 6.
Fig. 6. Several combinations for focusing the laser beams are shown: (a) focusing in a single point; (b) focusing all beams in the same plane, at equal distances from the optics; (c) beams 1 and 3 (from the horizontal plane) are focused before beams 2 and 4 (from the vertical plane); (d) beams 2 and 4 are focussed close to the optics, in front of beams 1 and 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ep=hν2γgσgAg×ln1ROCM×ln(ngfngi),
(1rn)+(1+(1δ)×lnTi2β)×ln(rn)+1α×(1δ)×lnTi2β×(1rnα)=0,

Metrics