Abstract

All-optical two-channel format conversion is proposed and experimentally demonstrated from a 40 Gbit/s polarization multiplexing (Pol-MUX) non-return-to-zero quadrature phase-shift keying (QPSK) signal to Pol-MUX binary phase-shift keying (BPSK) signals by using phase-doubled four-wave mixing effects with two polarization-angled pumps in a silicon waveguide. The eye diagrams and constellation diagrams of the original QPSK sequences and the converted BPSK sequences of each channel are clearly observed on the two polarization states. Moreover, the bit error rates (BERs) of the two converted idlers are measured. The power penalties of all these converted BPSK sequences on both X and Y polarization states are less than 3.4 dB at a BER of 3.8×103.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters

Ken Mishina, Suresh M. Nissanka, Akihiro Maruta, Shunsuke Mitani, Kazuyuki Ishida, Katsuhiro Shimizu, Tatsuo Hatta, and Ken-ichi Kitayama
Opt. Express 15(12) 7774-7785 (2007)

All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators

Yuanyuan Lu, Fangfei Liu, Min Qiu, and Yikai Su
Opt. Express 15(21) 14275-14282 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. Banchi, M. Presi, A. D’Errico, G. Contestabile, and E. Ciaramella, “All-optical 10 and 40  Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 28, 32–38 (2010).
    [Crossref]
  2. T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photon. Technol. Lett. 20, 1597–1599 (2008).
    [Crossref]
  3. L.-S. Yan, A.-L. Yi, W. Pan, B. Luo, and J. Ye, “Simultaneous NRZ-to-RZ format conversion and one-to-six error-free channel multicasting using a single pump in a highly nonlinear fiber,” Opt. Express 18, 21404–21409 (2010).
    [Crossref]
  4. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
    [Crossref]
  5. L. R. Chen and J. Wang, “All-optical RZ-OOK to RZ-BPSK conversion with multicasting based on XPM in highly nonlinear fiber,” Opt. Commun. 285, 3459–3465 (2012).
    [Crossref]
  6. B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol. 31, 952–966 (2013).
    [Crossref]
  7. Y. Xie, S. Gao, and S. He, “All-optical wavelength conversion and multicasting for polarization-multiplexed signal using angled pumps in a silicon waveguide,” Opt. Lett. 37, 1898–1900 (2012).
    [Crossref]
  8. Y. Gao, C. Shu, and S. He, “Cascaded SOA configuration for NRZ-OOK to RZ-QPSK format conversion,” Opt. Commun. 283, 4609–4613 (2010).
    [Crossref]
  9. Y.-H. Wen and K.-M. Feng, “A simple NRZ-OOK to PDM RZ-QPSK optical modulation format conversion by bidirectional XPM,” IEEE Photon. Technol. Lett. 27, 935–938 (2015).
    [Crossref]
  10. K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift keying based on nonlinearity in optical fiber,” Opt. Express 15, 8444–8453 (2007).
    [Crossref]
  11. A. Maruta and N. Hashimoto, “Experimental demonstration of all-optical modulation format conversion from NRZOOK to RZ-8APSK based on fiber nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3B.1.
  12. G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16-QAM modulation format conversion employing nonlinear optical loop mirror,” J. Lightwave Technol. 30, 1342–1350 (2012).
    [Crossref]
  13. B. Zou, Y. Yu, X. Huang, Z. Wu, W. Wu, and X. Zhang, “All-optical format conversion for multichannel QPSK signals,” J. Lightwave Technol. 31, 375–384 (2013).
    [Crossref]
  14. G. W. Lu and T. Miyazaki, “Experimental demonstration of RZ-8-APSK generation through optical amplitude and phase multiplexing,” IEEE Photon. Technol. Lett. 20, 1995–1997 (2008).
    [Crossref]
  15. B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
    [Crossref]
  16. F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2 × BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
    [Crossref]
  17. F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
    [Crossref]
  18. G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gbs RZ-DQPSK to 160-Gbs RZ-DPSK,” Opt. Express 17, 13346–13353 (2009).
    [Crossref]
  19. Y. Zhan, M. Zhang, M. Liu, L. Liu, and X. Chen, “All optical format conversion from 16QAM to QPSK based on four-wave mixing in semiconductor optical amplifier,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS2B.3.
  20. X. Wang, L. Huang, K. Yi, X. Feng, and S. Gao, “All-optical wavelength conversion and 5-channel multicasting for 20  Gbit/s QPSK signals in a silicon waveguide,” Opt. Lett. 39, 6122–6125 (2014).
    [Crossref]
  21. S. Gao, X. Wang, Y. Xie, P. Hu, and Q. Yan, “Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding,” Opt. Lett. 40, 1448–1451 (2015).
    [Crossref]
  22. W. Yang, Y. Yu, M. Ye, G. Chen, C. Zhang, and X. Zhang, “Phase regeneration for polarization-division multiplexed signals based on vector dual-pump nondegenerate phase sensitive amplification,” Opt. Express 23, 2010–2020 (2015).
    [Crossref]
  23. S. Gao, E.-K. Tien, Y. Huang, and S. He, “Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide,” Opt. Express 18, 27885–27890 (2010).
    [Crossref]
  24. M. Kuschnerov, F. Hauske, K. Piyawanno, B. Spinnler, M. Alfiad, A. Napoli, and B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightwave Technol. 27, 3614–3622 (2009).
    [Crossref]
  25. F. Derr, “Comparison of electrical and optical BPSK and QPSK systems,” J. Opt. Commun. 10, 127–131 (1989).
    [Crossref]

2015 (3)

2014 (2)

X. Wang, L. Huang, K. Yi, X. Feng, and S. Gao, “All-optical wavelength conversion and 5-channel multicasting for 20  Gbit/s QPSK signals in a silicon waveguide,” Opt. Lett. 39, 6122–6125 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

2013 (4)

2012 (3)

2010 (5)

Y. Gao, C. Shu, and S. He, “Cascaded SOA configuration for NRZ-OOK to RZ-QPSK format conversion,” Opt. Commun. 283, 4609–4613 (2010).
[Crossref]

L. Banchi, M. Presi, A. D’Errico, G. Contestabile, and E. Ciaramella, “All-optical 10 and 40  Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 28, 32–38 (2010).
[Crossref]

L.-S. Yan, A.-L. Yi, W. Pan, B. Luo, and J. Ye, “Simultaneous NRZ-to-RZ format conversion and one-to-six error-free channel multicasting using a single pump in a highly nonlinear fiber,” Opt. Express 18, 21404–21409 (2010).
[Crossref]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

S. Gao, E.-K. Tien, Y. Huang, and S. He, “Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide,” Opt. Express 18, 27885–27890 (2010).
[Crossref]

2009 (2)

2008 (2)

G. W. Lu and T. Miyazaki, “Experimental demonstration of RZ-8-APSK generation through optical amplitude and phase multiplexing,” IEEE Photon. Technol. Lett. 20, 1995–1997 (2008).
[Crossref]

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photon. Technol. Lett. 20, 1597–1599 (2008).
[Crossref]

2007 (1)

1989 (1)

F. Derr, “Comparison of electrical and optical BPSK and QPSK systems,” J. Opt. Commun. 10, 127–131 (1989).
[Crossref]

Alfiad, M.

Apiratikul, P.

Astar, W.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol. 31, 952–966 (2013).
[Crossref]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Banchi, L.

Cannon, B. M.

Carter, G. M.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol. 31, 952–966 (2013).
[Crossref]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Chen, G.

Chen, L. R.

L. R. Chen and J. Wang, “All-optical RZ-OOK to RZ-BPSK conversion with multicasting based on XPM in highly nonlinear fiber,” Opt. Commun. 285, 3459–3465 (2012).
[Crossref]

Chen, X.

Y. Zhan, M. Zhang, M. Liu, L. Liu, and X. Chen, “All optical format conversion from 16QAM to QPSK based on four-wave mixing in semiconductor optical amplifier,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS2B.3.

Cheng, X.

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Ciaramella, E.

Contestabile, G.

D’Errico, A.

Da Ros, F.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2 × BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

Dadap, J. I.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Dalgaard, K.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2 × BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

Derr, F.

F. Derr, “Comparison of electrical and optical BPSK and QPSK systems,” J. Opt. Commun. 10, 127–131 (1989).
[Crossref]

Driscoll, J. B.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Feng, K.-M.

Y.-H. Wen and K.-M. Feng, “A simple NRZ-OOK to PDM RZ-QPSK optical modulation format conversion by bidirectional XPM,” IEEE Photon. Technol. Lett. 27, 935–938 (2015).
[Crossref]

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Feng, X.

Ferreira, A.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photon. Technol. Lett. 20, 1597–1599 (2008).
[Crossref]

Fukuchi, Y.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

Galili, M.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

Gao, S.

Gao, Y.

Y. Gao, C. Shu, and S. He, “Cascaded SOA configuration for NRZ-OOK to RZ-QPSK format conversion,” Opt. Commun. 283, 4609–4613 (2010).
[Crossref]

Green, W. M. J.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Hashimoto, N.

A. Maruta and N. Hashimoto, “Experimental demonstration of all-optical modulation format conversion from NRZOOK to RZ-8APSK based on fiber nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3B.1.

Hauske, F.

He, S.

Hu, P.

Huang, G.

Huang, L.

Huang, X.

Huang, Y.

Kam, P.-K.

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Kitagawa, S.

Kitayama, K.

Kuschnerov, M.

Lankl, B.

Lei, L.

Liu, L.

Y. Zhan, M. Zhang, M. Liu, L. Liu, and X. Chen, “All optical format conversion from 16QAM to QPSK based on four-wave mixing in semiconductor optical amplifier,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS2B.3.

Liu, M.

Y. Zhan, M. Zhang, M. Liu, L. Liu, and X. Chen, “All optical format conversion from 16QAM to QPSK based on four-wave mixing in semiconductor optical amplifier,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS2B.3.

Liu, X.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Lu, G. W.

G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gbs RZ-DQPSK to 160-Gbs RZ-DPSK,” Opt. Express 17, 13346–13353 (2009).
[Crossref]

G. W. Lu and T. Miyazaki, “Experimental demonstration of RZ-8-APSK generation through optical amplitude and phase multiplexing,” IEEE Photon. Technol. Lett. 20, 1995–1997 (2008).
[Crossref]

Luo, B.

Mahmood, T.

Maruta, A.

Mishina, K.

Miyazaki, T.

G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gbs RZ-DQPSK to 160-Gbs RZ-DPSK,” Opt. Express 17, 13346–13353 (2009).
[Crossref]

G. W. Lu and T. Miyazaki, “Experimental demonstration of RZ-8-APSK generation through optical amplitude and phase multiplexing,” IEEE Photon. Technol. Lett. 20, 1995–1997 (2008).
[Crossref]

Miyoshi, Y.

Monteiro, P.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photon. Technol. Lett. 20, 1597–1599 (2008).
[Crossref]

Napoli, A.

Osgood, R. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Pan, W.

Peucheret, C.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2 × BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

Piyawanno, K.

Porkolab, G. A.

Presi, M.

Richardson, C. J. K.

Shu, C.

Y. Gao, C. Shu, and S. He, “Cascaded SOA configuration for NRZ-OOK to RZ-QPSK format conversion,” Opt. Commun. 283, 4609–4613 (2010).
[Crossref]

Silveira, T.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photon. Technol. Lett. 20, 1597–1599 (2008).
[Crossref]

Spinnler, B.

Teixeira, A.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photon. Technol. Lett. 20, 1597–1599 (2008).
[Crossref]

Tien, E.-K.

Vlasov, Y. A.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

Wang, J.

L. R. Chen and J. Wang, “All-optical RZ-OOK to RZ-BPSK conversion with multicasting based on XPM in highly nonlinear fiber,” Opt. Commun. 285, 3459–3465 (2012).
[Crossref]

Wang, X.

Wen, Y.-H.

Y.-H. Wen and K.-M. Feng, “A simple NRZ-OOK to PDM RZ-QPSK optical modulation format conversion by bidirectional XPM,” IEEE Photon. Technol. Lett. 27, 935–938 (2015).
[Crossref]

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Wu, W.

Wu, Z.

Xie, Y.

Xu, J.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2 × BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21, 28743–28750 (2013).
[Crossref]

Yan, L.-S.

Yan, Q.

Yang, J.

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Yang, W.

Ye, J.

Ye, M.

Yeo, Y. K.

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Yi, A.-L.

Yi, K.

Yoshida, Y.

Yu, C.

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Yu, Y.

Zhan, Y.

Y. Zhan, M. Zhang, M. Liu, L. Liu, and X. Chen, “All optical format conversion from 16QAM to QPSK based on four-wave mixing in semiconductor optical amplifier,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS2B.3.

Zhang, B.

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Zhang, C.

Zhang, H.

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

Zhang, M.

Y. Zhan, M. Zhang, M. Liu, L. Liu, and X. Chen, “All optical format conversion from 16QAM to QPSK based on four-wave mixing in semiconductor optical amplifier,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS2B.3.

Zhang, X.

Zou, B.

IEEE J. Sel. Top. Quantum Electron. (1)

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of similar to 2.5  dB,” IEEE J. Sel. Top. Quantum Electron. 16, 234–249 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (5)

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photon. Technol. Lett. 20, 1597–1599 (2008).
[Crossref]

Y.-H. Wen and K.-M. Feng, “A simple NRZ-OOK to PDM RZ-QPSK optical modulation format conversion by bidirectional XPM,” IEEE Photon. Technol. Lett. 27, 935–938 (2015).
[Crossref]

G. W. Lu and T. Miyazaki, “Experimental demonstration of RZ-8-APSK generation through optical amplitude and phase multiplexing,” IEEE Photon. Technol. Lett. 20, 1995–1997 (2008).
[Crossref]

B. Zhang, H. Zhang, C. Yu, X. Cheng, Y. K. Yeo, P.-K. Kam, J. Yang, H. Zhang, Y.-H. Wen, and K.-M. Feng, “An all-optical modulation format conversion for 8QAM based on FWM in HNLF,” IEEE Photon. Technol. Lett. 25, 327–330 (2013).
[Crossref]

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-2 × BPSK wavelength and modulation format conversion in PPLN,” IEEE Photon. Technol. Lett. 26, 1207–1210 (2014).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Commun. (1)

F. Derr, “Comparison of electrical and optical BPSK and QPSK systems,” J. Opt. Commun. 10, 127–131 (1989).
[Crossref]

Opt. Commun. (2)

Y. Gao, C. Shu, and S. He, “Cascaded SOA configuration for NRZ-OOK to RZ-QPSK format conversion,” Opt. Commun. 283, 4609–4613 (2010).
[Crossref]

L. R. Chen and J. Wang, “All-optical RZ-OOK to RZ-BPSK conversion with multicasting based on XPM in highly nonlinear fiber,” Opt. Commun. 285, 3459–3465 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Other (2)

Y. Zhan, M. Zhang, M. Liu, L. Liu, and X. Chen, “All optical format conversion from 16QAM to QPSK based on four-wave mixing in semiconductor optical amplifier,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS2B.3.

A. Maruta and N. Hashimoto, “Experimental demonstration of all-optical modulation format conversion from NRZOOK to RZ-8APSK based on fiber nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3B.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Principle of the format conversion from a Pol-MUX QPSK signal to Pol-MUX BPSK signals based on phase-doubled FWM in a silicon waveguide. (a) Phase-doubled FWMs with polarization-angled pumps, and (b) phase change between the QPSK signal and the BPSK idler via the phase-doubled FWM process.
Fig. 2.
Fig. 2. Experimental setup of the two-channel format conversion from Pol-MUX QPSK to Pol-MUX BPSK signals based on phase-doubled FWM in a silicon waveguide.
Fig. 3.
Fig. 3. Measured optical spectrum of the FWM processes for two-channel format conversion at the end of the silicon waveguide.
Fig. 4.
Fig. 4. Measured eye diagrams of the Pol-MUX QPSK signal: (a)  S X , and (b)  S Y . Format-converted Pol-MUX BPSK signals on idlers I 1 and I 2 : (c)  I 1 X , (d)  I 1 Y , (e)  I 2 X , and (f)  I 2 Y (20 ps/div).
Fig. 5.
Fig. 5. Measured constellation diagrams of the Pol-MUX QPSK signal on signal S and the two-channel format-converted Pol-MUX BPSK signals on idlers I 1 and I 2 : (a)  S X , (b)  S Y , (c)  I 1 X , (d)  I 1 Y , (e)  I 2 X , and (f)  I 2 Y .
Fig. 6.
Fig. 6. Measured BERs as functions of the OSNR for the incident BTB signals and the two-channel format-converted idlers.

Metrics