Abstract

In this paper, we present the luminescent properties of Tm3+/Ho3+ co-doped new glass. A series of silicate-germanate glass was prepared by the conventional melt-quenching method. In the Tm3+/Ho3+ co-doped silicate-germanate glass, a strong emission of 2 μm originating from the Ho3+:I75I85 transition can be observed under conventional 808 nm pumping. The characteristic temperatures, structure, and absorption spectra have been measured. The radiative properties of Ho3+ in the prepared glass were calculated. The emission cross section of Ho3+ ions transition can reach 4.78×1021  cm2 around 2 μm, and the FWHM is as high as 153 nm. The energy transfer efficiency between Ho3+ and Tm3+ has a large value (52%), which indicates the Tm3+/Ho3+ co-doped silicate-germanate glass is a suitable candidate for the 2 μm laser. Moreover, the energy transfer mechanism between Tm3+ and Ho3+ ions was investigated.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopy of thulium and holmium co-doped silicate glasses

Ruijie Cao, Yu Lu, Ying Tian, Feifei Huang, Shiqing Xu, and Junjie Zhang
Opt. Mater. Express 6(7) 2252-2263 (2016)

Ho3+/Yb3+-codoped germanate–tellurite glasses for 2.0  μm emission performance

Ya-Pei Peng, Yanyan Guo, Junjie Zhang, and Long Zhang
Appl. Opt. 53(8) 1564-1569 (2014)

Ho3+/Yb3+ codoped silicate glasses for 2  μm emission performances

Ruijie Cao, Muzhi Cai, Yu Lu, Ying Tian, Feifei Huang, Shiqing Xu, and Junjie Zhang
Appl. Opt. 55(8) 2065-2070 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Richards, A. Jha, Y. Tsang, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177–193 (2010).
    [Crossref]
  2. G. J. Koch, M. Petros, J. Yu, and U. N. Singh, “Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
    [Crossref]
  3. K. Scholle, E. Heumann, and G. Huber, “Single mode tm and Tm, Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
    [Crossref]
  4. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20, 2562–2571 (2012).
    [Crossref]
  5. S. Li, P. Wang, H. Xia, J. Peng, L. Tang, Y. Zhang, and H. Jiang, “Tm3+ and Nd3+ singly doped LiYF4 single crystals with 3–5  μm mid-infrared luminescence,” Chin. Opt. Lett. 12, 021601 (2014).
    [Crossref]
  6. A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fiber lasers,” Opt. Express 21, 4560–4566 (2013).
    [Crossref]
  7. C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, “High-energy passively Q-switched 2  μm Tm3+-doped double-clad fiber laser using graphene-oxide–deposited fiber taper,” Opt. Express 21, 204–209 (2013).
    [Crossref]
  8. L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
    [Crossref]
  9. B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).
  10. Y. Ju, W. Liu, B. Yao, T. Dai, J. Wu, J. Yuan, J. Wang, X. Duan, and Y. Wang, “Diode-pumped tunable single-longitudinal-mode Tm, Ho:YAG twisted-mode laser,” Chin. Opt. Lett. 13, 111403 (2015).
    [Crossref]
  11. G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
    [Crossref]
  12. L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
    [Crossref]
  13. W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).
  14. G. Chen, Q. Zhang, G. Yang, and Z. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+,” J. Fluoresc. 17, 301–307 (2007).
    [Crossref]
  15. S. D. Jackson, “The effects of energy transfer upconversion on the performance of Tm3+/Ho3+-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 18, 1885–1887 (2006).
    [Crossref]
  16. Q. Zhang, J. Ding, Y. Shen, G. Zhang, G. Lin, J. Qiu, and D. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27, 975–980 (2010).
    [Crossref]
  17. T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
    [Crossref]
  18. W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
    [Crossref]
  19. M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
    [Crossref]
  20. S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14, 11687–11693 (2006).
    [Crossref]
  21. Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses,” J. Mater. Res. 19, 1630–1637 (2004).
    [Crossref]
  22. D. Dorosz, “Rare earth ions doped aluminosilicate and phosphate double clad optical fibres,” Bull. Polish Acad. Sci. 56, 103–111 (2008).
  23. G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
    [Crossref]
  24. T. Xue, L. Zhang, L. Wen, M. Liao, and L. Hu, “Er3+ doped fluorogallate glass for mid-infrared applications,” Chin. Opt. Lett. 13, 081602 (2015).
    [Crossref]
  25. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber,” Appl. Phys. B 104, 839–844 (2011).
    [Crossref]
  26. A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” J. Phys. B 22, 1187–1193 (1972).
  27. M. G. Drexhage, O. H. EI Bayoumi, and C. T. Moyniyan, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65, c168–c171 (1982).
    [Crossref]
  28. Y. Messaddeq and M. Poulain, “Stabilizing effect of aluminium, yttrium and zirconium in divalent fluoride glasses,” J. Non-Cryst. Solids 140, 41–46 (1992).
    [Crossref]
  29. F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7  μm emission,” Chin. Opt. Lett. 12, 051601 (2014).
    [Crossref]
  30. K. Fukumi and S. Sakka, “Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy,” J. Mater. Sci. 23, 2819–2823 (1988).
    [Crossref]
  31. A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
    [Crossref]
  32. H. Verweij, “Raman study of the structure of alkali germanosilicate glasses, Lithium, sodium and potassium digermanosilicate glasses,” J. Non-Cryst. Solids 33, 55–69 (1979).
    [Crossref]
  33. Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure,” Mater. Res. Bull. 39, 217–222 (2004).
    [Crossref]
  34. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses,” J. Phys. Chem. A. 115, 6488–6492 (2011).
    [Crossref]
  35. G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).
    [Crossref]
  36. E. V. Kolobkova, “Raman-spectroscopy study of the structure of niobium germanate glasses,” Soviet J. Glass Phys. Chem. 13, 176–181 (1988).
  37. K. Awazu and H. Kawazoe, “Strained Si-O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94, 6243–6262 (2003).
    [Crossref]
  38. B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  39. G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  40. E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ion in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ion in various glasses,” Opt. Mater. 4, 529–546 (1995).
    [Crossref]
  41. B. Peng and T. Lzumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
    [Crossref]
  42. K. Binnemans, R. Deun, C. Walrand, and J. Adam, “Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses,” J. Non-Cryst. Solids 238, 11–29 (1998).
    [Crossref]
  43. X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
    [Crossref]
  44. M. Li, X. Liu, Y. Guo, L. Hu, and J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission,” J. Appl. Phys. 114, 243501 (2013).
    [Crossref]
  45. M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
    [Crossref]
  46. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
    [Crossref]
  47. X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly-and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
    [Crossref]
  48. R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
    [Crossref]
  49. J. Ding, G. Zhao, Y. Tian, W. Chen, and L. Hu, “Bismuth silicate glass: a new choice for 2  μm fiber lasers,” Opt. Mater. 35, 85–88 (2012).
    [Crossref]
  50. Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951–957 (2004).
    [Crossref]
  51. D. Shi, Q. Zhang, G. Yang, and Z. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+,” J. Non-Cryst. Solids 353, 1508–1514 (2007).
    [Crossref]
  52. K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
    [Crossref]
  53. A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
    [Crossref]
  54. L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
    [Crossref]

2015 (4)

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

T. Xue, L. Zhang, L. Wen, M. Liao, and L. Hu, “Er3+ doped fluorogallate glass for mid-infrared applications,” Chin. Opt. Lett. 13, 081602 (2015).
[Crossref]

Y. Ju, W. Liu, B. Yao, T. Dai, J. Wu, J. Yuan, J. Wang, X. Duan, and Y. Wang, “Diode-pumped tunable single-longitudinal-mode Tm, Ho:YAG twisted-mode laser,” Chin. Opt. Lett. 13, 111403 (2015).
[Crossref]

2014 (2)

2013 (7)

C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, “High-energy passively Q-switched 2  μm Tm3+-doped double-clad fiber laser using graphene-oxide–deposited fiber taper,” Opt. Express 21, 204–209 (2013).
[Crossref]

A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fiber lasers,” Opt. Express 21, 4560–4566 (2013).
[Crossref]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
[Crossref]

W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
[Crossref]

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
[Crossref]

W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).

M. Li, X. Liu, Y. Guo, L. Hu, and J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission,” J. Appl. Phys. 114, 243501 (2013).
[Crossref]

2012 (3)

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
[Crossref]

J. Ding, G. Zhao, Y. Tian, W. Chen, and L. Hu, “Bismuth silicate glass: a new choice for 2  μm fiber lasers,” Opt. Mater. 35, 85–88 (2012).
[Crossref]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express 20, 2562–2571 (2012).
[Crossref]

2011 (3)

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber,” Appl. Phys. B 104, 839–844 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses,” J. Phys. Chem. A. 115, 6488–6492 (2011).
[Crossref]

2010 (3)

B. Richards, A. Jha, Y. Tsang, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177–193 (2010).
[Crossref]

K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
[Crossref]

Q. Zhang, J. Ding, Y. Shen, G. Zhang, G. Lin, J. Qiu, and D. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27, 975–980 (2010).
[Crossref]

2009 (4)

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
[Crossref]

2008 (1)

D. Dorosz, “Rare earth ions doped aluminosilicate and phosphate double clad optical fibres,” Bull. Polish Acad. Sci. 56, 103–111 (2008).

2007 (3)

G. Chen, Q. Zhang, G. Yang, and Z. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+,” J. Fluoresc. 17, 301–307 (2007).
[Crossref]

D. Shi, Q. Zhang, G. Yang, and Z. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+,” J. Non-Cryst. Solids 353, 1508–1514 (2007).
[Crossref]

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

2006 (2)

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14, 11687–11693 (2006).
[Crossref]

S. D. Jackson, “The effects of energy transfer upconversion on the performance of Tm3+/Ho3+-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 18, 1885–1887 (2006).
[Crossref]

2005 (1)

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

2004 (4)

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure,” Mater. Res. Bull. 39, 217–222 (2004).
[Crossref]

K. Scholle, E. Heumann, and G. Huber, “Single mode tm and Tm, Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses,” J. Mater. Res. 19, 1630–1637 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951–957 (2004).
[Crossref]

2003 (1)

K. Awazu and H. Kawazoe, “Strained Si-O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94, 6243–6262 (2003).
[Crossref]

2002 (1)

2000 (2)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
[Crossref]

B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).

1998 (1)

K. Binnemans, R. Deun, C. Walrand, and J. Adam, “Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses,” J. Non-Cryst. Solids 238, 11–29 (1998).
[Crossref]

1996 (1)

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly-and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[Crossref]

1995 (2)

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ion in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ion in various glasses,” Opt. Mater. 4, 529–546 (1995).
[Crossref]

B. Peng and T. Lzumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[Crossref]

1992 (1)

Y. Messaddeq and M. Poulain, “Stabilizing effect of aluminium, yttrium and zirconium in divalent fluoride glasses,” J. Non-Cryst. Solids 140, 41–46 (1992).
[Crossref]

1988 (2)

K. Fukumi and S. Sakka, “Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy,” J. Mater. Sci. 23, 2819–2823 (1988).
[Crossref]

E. V. Kolobkova, “Raman-spectroscopy study of the structure of niobium germanate glasses,” Soviet J. Glass Phys. Chem. 13, 176–181 (1988).

1982 (1)

M. G. Drexhage, O. H. EI Bayoumi, and C. T. Moyniyan, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65, c168–c171 (1982).
[Crossref]

1979 (1)

H. Verweij, “Raman study of the structure of alkali germanosilicate glasses, Lithium, sodium and potassium digermanosilicate glasses,” J. Non-Cryst. Solids 33, 55–69 (1979).
[Crossref]

1972 (1)

A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” J. Phys. B 22, 1187–1193 (1972).

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

1962 (2)

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Adam, J.

K. Binnemans, R. Deun, C. Walrand, and J. Adam, “Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses,” J. Non-Cryst. Solids 238, 11–29 (1998).
[Crossref]

Aggarwal, I. D.

Almeida, R. M.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Aronne, A.

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

Awazu, K.

K. Awazu and H. Kawazoe, “Strained Si-O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94, 6243–6262 (2003).
[Crossref]

Bai, G.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
[Crossref]

Bayya, S. S.

Bennetts, S.

Binnemans, K.

K. Binnemans, R. Deun, C. Walrand, and J. Adam, “Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses,” J. Non-Cryst. Solids 238, 11–29 (1998).
[Crossref]

Braud, A.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
[Crossref]

Cai, M. Z.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Califano, V.

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

Cao, R.

Carter, A.

Champagnon, B.

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

Chaussedent, S.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Chen, D.

Chen, G.

G. Chen, Q. Zhang, G. Yang, and Z. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+,” J. Fluoresc. 17, 301–307 (2007).
[Crossref]

Chen, H.

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Chen, W.

J. Ding, G. Zhao, Y. Tian, W. Chen, and L. Hu, “Bismuth silicate glass: a new choice for 2  μm fiber lasers,” Opt. Mater. 35, 85–88 (2012).
[Crossref]

Chen, Y.

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

Cheng, H.

Chiasera, A.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Chin, G. D.

Choi, Y. G.

B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).

Cochain, B.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).
[Crossref]

Cormier, L.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).
[Crossref]

Dai, T.

Davidson, A.

Deun, R.

K. Binnemans, R. Deun, C. Walrand, and J. Adam, “Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses,” J. Non-Cryst. Solids 238, 11–29 (1998).
[Crossref]

Ding, J.

Dorosz, D.

D. Dorosz, “Rare earth ions doped aluminosilicate and phosphate double clad optical fibres,” Bull. Polish Acad. Sci. 56, 103–111 (2008).

Doualan, J. L.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
[Crossref]

Drexhage, M. G.

M. G. Drexhage, O. H. EI Bayoumi, and C. T. Moyniyan, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65, c168–c171 (1982).
[Crossref]

Duan, X.

EI Bayoumi, O. H.

M. G. Drexhage, O. H. EI Bayoumi, and C. T. Moyniyan, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65, c168–c171 (1982).
[Crossref]

Fan, H.

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Fan, S.

K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
[Crossref]

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Fan, W.

W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
[Crossref]

Fanelli, E.

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

Feng, S.

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

Ferrari, M.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Fortes, L. M.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Fukumi, K.

K. Fukumi and S. Sakka, “Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy,” J. Mater. Sci. 23, 2819–2823 (1988).
[Crossref]

Gao, G.

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
[Crossref]

Goncalves, M. C.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Guo, Y.

M. Li, X. Liu, Y. Guo, L. Hu, and J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission,” J. Appl. Phys. 114, 243501 (2013).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
[Crossref]

Han, W. T.

W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
[Crossref]

Haub, J.

Hemming, A.

Henderson, G. S.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).
[Crossref]

Heo, J.

B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, “Single mode tm and Tm, Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[Crossref]

Hruby, A.

A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” J. Phys. B 22, 1187–1193 (1972).

Htein, L.

W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
[Crossref]

Hu, L.

T. Xue, L. Zhang, L. Wen, M. Liao, and L. Hu, “Er3+ doped fluorogallate glass for mid-infrared applications,” Chin. Opt. Lett. 13, 081602 (2015).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7  μm emission,” Chin. Opt. Lett. 12, 051601 (2014).
[Crossref]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
[Crossref]

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
[Crossref]

M. Li, X. Liu, Y. Guo, L. Hu, and J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission,” J. Appl. Phys. 114, 243501 (2013).
[Crossref]

J. Ding, G. Zhao, Y. Tian, W. Chen, and L. Hu, “Bismuth silicate glass: a new choice for 2  μm fiber lasers,” Opt. Mater. 35, 85–88 (2012).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
[Crossref]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses,” J. Phys. Chem. A. 115, 6488–6492 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber,” Appl. Phys. B 104, 839–844 (2011).
[Crossref]

K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
[Crossref]

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses,” J. Mater. Res. 19, 1630–1637 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure,” Mater. Res. Bull. 39, 217–222 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951–957 (2004).
[Crossref]

Huang, F.

Huber, G.

K. Scholle, E. Heumann, and G. Huber, “Single mode tm and Tm, Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[Crossref]

Jackson, S. D.

S. D. Jackson, “The effects of energy transfer upconversion on the performance of Tm3+/Ho3+-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 18, 1885–1887 (2006).
[Crossref]

Jayasankar, C. K.

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ion in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ion in various glasses,” Opt. Mater. 4, 529–546 (1995).
[Crossref]

Jha, A.

B. Richards, A. Jha, Y. Tsang, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177–193 (2010).
[Crossref]

Jia, Y.

W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).

Jiang, H.

Jiang, Z.

G. Chen, Q. Zhang, G. Yang, and Z. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+,” J. Fluoresc. 17, 301–307 (2007).
[Crossref]

D. Shi, Q. Zhang, G. Yang, and Z. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+,” J. Non-Cryst. Solids 353, 1508–1514 (2007).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure,” Mater. Res. Bull. 39, 217–222 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses,” J. Mater. Res. 19, 1630–1637 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951–957 (2004).
[Crossref]

Jing, X. F.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Ju, Y.

Judd, B.

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Kawazoe, H.

K. Awazu and H. Kawazoe, “Strained Si-O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94, 6243–6262 (2003).
[Crossref]

Kim, B. H.

W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
[Crossref]

Kim, Y. S.

B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).

Koch, G. J.

Kolobkova, E. V.

E. V. Kolobkova, “Raman-spectroscopy study of the structure of niobium germanate glasses,” Soviet J. Glass Phys. Chem. 13, 176–181 (1988).

Kong, L.

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Li, K.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
[Crossref]

K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
[Crossref]

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Li, M.

M. Li, X. Liu, Y. Guo, L. Hu, and J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission,” J. Appl. Phys. 114, 243501 (2013).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
[Crossref]

Li, S.

Li, W.

Li, X.

Liao, M.

Lim, H. T.

B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).

Lin, G.

Liu, C.

Liu, W.

Liu, X.

Liu, Z.

Luo, Z.

Lzumitani, T.

B. Peng and T. Lzumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[Crossref]

Mattarelli, M.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

Messaddeq, Y.

Y. Messaddeq and M. Poulain, “Stabilizing effect of aluminium, yttrium and zirconium in divalent fluoride glasses,” J. Non-Cryst. Solids 140, 41–46 (1992).
[Crossref]

Moncorgé, R.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
[Crossref]

Montagna, M.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Monteil, A.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Moyniyan, C. T.

M. G. Drexhage, O. H. EI Bayoumi, and C. T. Moyniyan, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65, c168–c171 (1982).
[Crossref]

Neuville, D. R.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).
[Crossref]

Ofelt, G.

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Pan, J.

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Peng, B.

B. Peng and T. Lzumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[Crossref]

Peng, J.

Peng, M.

Pernice, P.

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

Petros, M.

Poulain, M.

Y. Messaddeq and M. Poulain, “Stabilizing effect of aluminium, yttrium and zirconium in divalent fluoride glasses,” J. Non-Cryst. Solids 140, 41–46 (1992).
[Crossref]

Qian, L.

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Qian, S.

W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).

Qiu, J.

Qu, B.

Ren, J.

W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).

Richards, B.

B. Richards, A. Jha, Y. Tsang, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177–193 (2010).
[Crossref]

Righini, G. C.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Rong, L.

W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).

Rukmini, E.

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ion in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ion in various glasses,” Opt. Mater. 4, 529–546 (1995).
[Crossref]

Sakka, S.

K. Fukumi and S. Sakka, “Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy,” J. Mater. Sci. 23, 2819–2823 (1988).
[Crossref]

Sanghera, J. S.

Santos, L. F.

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, “Single mode tm and Tm, Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[Crossref]

Shen, Y.

Shi, D.

D. Shi, Q. Zhang, G. Yang, and Z. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+,” J. Non-Cryst. Solids 353, 1508–1514 (2007).
[Crossref]

Sibbett, W.

B. Richards, A. Jha, Y. Tsang, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177–193 (2010).
[Crossref]

Sigaev, V. N.

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

Simakov, N.

Singh, U. N.

Tang, L.

Tao, L.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
[Crossref]

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
[Crossref]

Tian, C.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Tian, Y.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

J. Ding, G. Zhao, Y. Tian, W. Chen, and L. Hu, “Bismuth silicate glass: a new choice for 2  μm fiber lasers,” Opt. Mater. 35, 85–88 (2012).
[Crossref]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses,” J. Phys. Chem. A. 115, 6488–6492 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber,” Appl. Phys. B 104, 839–844 (2011).
[Crossref]

Toratani, H.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly-and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[Crossref]

Tsang, Y.

B. Richards, A. Jha, Y. Tsang, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177–193 (2010).
[Crossref]

Tsang, Y. H.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
[Crossref]

Usmanova, L. Z.

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

Verweij, H.

H. Verweij, “Raman study of the structure of alkali germanosilicate glasses, Lithium, sodium and potassium digermanosilicate glasses,” J. Non-Cryst. Solids 33, 55–69 (1979).
[Crossref]

Walrand, C.

K. Binnemans, R. Deun, C. Walrand, and J. Adam, “Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses,” J. Non-Cryst. Solids 238, 11–29 (1998).
[Crossref]

Wang, G.

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
[Crossref]

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

Wang, J.

Wang, M.

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
[Crossref]

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

Wang, P.

Wang, S.

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Wang, Y.

Watekar, P. R.

W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
[Crossref]

Wei, T.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Wen, L.

Wondraczek, L.

Wu, D.

Wu, J.

Xia, H.

Xie, G.

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Xu, R.

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses,” J. Phys. Chem. A. 115, 6488–6492 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber,” Appl. Phys. B 104, 839–844 (2011).
[Crossref]

Xu, S.

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951–957 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure,” Mater. Res. Bull. 39, 217–222 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses,” J. Mater. Res. 19, 1630–1637 (2004).
[Crossref]

Xu, S. Q.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Xue, T.

Yang, G.

G. Chen, Q. Zhang, G. Yang, and Z. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+,” J. Fluoresc. 17, 301–307 (2007).
[Crossref]

D. Shi, Q. Zhang, G. Yang, and Z. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+,” J. Non-Cryst. Solids 353, 1508–1514 (2007).
[Crossref]

Yang, Z.

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure,” Mater. Res. Bull. 39, 217–222 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses,” J. Mater. Res. 19, 1630–1637 (2004).
[Crossref]

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951–957 (2004).
[Crossref]

Yao, B.

Ye, C.

Yi, L.

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
[Crossref]

Yong, B. S.

B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).

Yu, H.

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Yu, J.

Yuan, J.

Yuan, P.

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Zhang, G.

Zhang, H.

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Zhang, J.

M. Li, X. Liu, Y. Guo, L. Hu, and J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission,” J. Appl. Phys. 114, 243501 (2013).
[Crossref]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
[Crossref]

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
[Crossref]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses,” J. Phys. Chem. A. 115, 6488–6492 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber,” Appl. Phys. B 104, 839–844 (2011).
[Crossref]

K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
[Crossref]

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

Zhang, J. J.

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Zhang, L.

Zhang, Q.

K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
[Crossref]

Q. Zhang, J. Ding, Y. Shen, G. Zhang, G. Lin, J. Qiu, and D. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27, 975–980 (2010).
[Crossref]

D. Shi, Q. Zhang, G. Yang, and Z. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+,” J. Non-Cryst. Solids 353, 1508–1514 (2007).
[Crossref]

G. Chen, Q. Zhang, G. Yang, and Z. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+,” J. Fluoresc. 17, 301–307 (2007).
[Crossref]

Zhang, W.

W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).

Zhang, Y.

Zhao, G.

J. Ding, G. Zhao, Y. Tian, W. Chen, and L. Hu, “Bismuth silicate glass: a new choice for 2  μm fiber lasers,” Opt. Mater. 35, 85–88 (2012).
[Crossref]

Zheng, Y.

Zou, X.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly-and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Broadband 2  μm emission and energy-transfer properties of thulium-doped oxyfluoride germanate glass fiber,” Appl. Phys. B 104, 839–844 (2011).
[Crossref]

Bull. Polish Acad. Sci. (1)

D. Dorosz, “Rare earth ions doped aluminosilicate and phosphate double clad optical fibres,” Bull. Polish Acad. Sci. 56, 103–111 (2008).

Chin. Opt. Lett. (5)

IEEE Photon. Technol. Lett. (1)

S. D. Jackson, “The effects of energy transfer upconversion on the performance of Tm3+/Ho3+-doped silica fiber lasers,” IEEE Photon. Technol. Lett. 18, 1885–1887 (2006).
[Crossref]

J. Am. Ceram. Soc. (2)

B. S. Yong, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0  μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000).

M. G. Drexhage, O. H. EI Bayoumi, and C. T. Moyniyan, “Preparation and properties of heavy-metal fluoride glasses containing ytterbium or lutetium,” J. Am. Ceram. Soc. 65, c168–c171 (1982).
[Crossref]

J. Appl. Phys. (3)

M. Li, X. Liu, Y. Guo, L. Hu, and J. Zhang, “Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for 2  μm emission,” J. Appl. Phys. 114, 243501 (2013).
[Crossref]

K. Awazu and H. Kawazoe, “Strained Si-O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94, 6243–6262 (2003).
[Crossref]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[Crossref]

J. Chem. Phys. (1)

G. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

J. Fluoresc. (1)

G. Chen, Q. Zhang, G. Yang, and Z. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+,” J. Fluoresc. 17, 301–307 (2007).
[Crossref]

J. Lumin. (1)

M. Li, G. Bai, Y. Guo, L. Hu, and J. Zhang, “Investigation on Tm3+-doped silicate glass for 1.8  μm emission,” J. Lumin. 132, 1830–1835 (2012).
[Crossref]

J. Mater. Res. (1)

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead-germanium-tellurite glasses,” J. Mater. Res. 19, 1630–1637 (2004).
[Crossref]

J. Mater. Sci. (1)

K. Fukumi and S. Sakka, “Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy,” J. Mater. Sci. 23, 2819–2823 (1988).
[Crossref]

J. Non-Cryst. Solids (7)

A. Aronne, V. N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L. Z. Usmanova, and P. Pernice, “The origin of nanostructuring in potassium niobiosilicate glasses by Raman and FTIR spectroscopy,” J. Non-Cryst. Solids 351, 3610–3618 (2005).
[Crossref]

H. Verweij, “Raman study of the structure of alkali germanosilicate glasses, Lithium, sodium and potassium digermanosilicate glasses,” J. Non-Cryst. Solids 33, 55–69 (1979).
[Crossref]

Y. Messaddeq and M. Poulain, “Stabilizing effect of aluminium, yttrium and zirconium in divalent fluoride glasses,” J. Non-Cryst. Solids 140, 41–46 (1992).
[Crossref]

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).
[Crossref]

K. Binnemans, R. Deun, C. Walrand, and J. Adam, “Spectroscopic properties of trivalent lanthanide ions in fluorophosphates glasses,” J. Non-Cryst. Solids 238, 11–29 (1998).
[Crossref]

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly-and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[Crossref]

D. Shi, Q. Zhang, G. Yang, and Z. Jiang, “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+,” J. Non-Cryst. Solids 353, 1508–1514 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

A. Hruby, “Evaluation of glass-forming tendency by means of DTA,” J. Phys. B 22, 1187–1193 (1972).

J. Phys. Chem. A. (1)

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Structural origin and energy transfer processes of 1.8  μm emission in Tm3+ doped germanate glasses,” J. Phys. Chem. A. 115, 6488–6492 (2011).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

T. Wei, C. Tian, M. Z. Cai, Y. Tian, X. F. Jing, J. J. Zhang, and S. Q. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quant. Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Laser Phys. Lett. (2)

B. Richards, A. Jha, Y. Tsang, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177–193 (2010).
[Crossref]

K. Scholle, E. Heumann, and G. Huber, “Single mode tm and Tm, Ho: LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1, 285–290 (2004).
[Crossref]

Mater. Res. Bull. (1)

Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Density of Na2O-(3-x)SiO2-xGeO2 glasses related to structure,” Mater. Res. Bull. 39, 217–222 (2004).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

W. Fan, L. Htein, B. H. Kim, P. R. Watekar, and W. T. Han, “Upconversion luminescence in bismuth-doped germane-silicate glass optical fiber,” Opt. Laser Technol. 54, 376–379 (2013).
[Crossref]

Opt. Mater. (8)

G. Gao, L. Hu, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, and J. Zhang, “Investigation of 2.0  μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2O3 glasses,” Opt. Mater. 32, 402–405 (2009).
[Crossref]

L. Yi, M. Wang, S. Feng, Y. Chen, G. Wang, L. Hu, and J. Zhang, “Emission properties of Ho3+: 5I7 → 5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphates glasses,” Opt. Mater. 31, 1586–1590 (2009).
[Crossref]

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced light emission near 2.7  μm from Er-Nd co-doped germanate glass,” Opt. Mater. 35, 1247–1250 (2013).
[Crossref]

K. Li, Q. Zhang, S. Fan, L. Zhang, J. Zhang, and L. Hu, “Mid-infrared luminescence and energy transfer characteristics of Ho3+/Yb3+codoped lanthanum-tungsten-tellurite glasses,” Opt. Mater. 33, 31–35 (2010).
[Crossref]

J. Ding, G. Zhao, Y. Tian, W. Chen, and L. Hu, “Bismuth silicate glass: a new choice for 2  μm fiber lasers,” Opt. Mater. 35, 85–88 (2012).
[Crossref]

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ion in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ion in various glasses,” Opt. Mater. 4, 529–546 (1995).
[Crossref]

B. Peng and T. Lzumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[Crossref]

L. M. Fortes, L. F. Santos, M. C. Goncalves, R. M. Almeida, M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, A. Monteil, S. Chaussedent, and G. C. Righini, “Er3+ ion dispersion in tellurite oxychloride glasses,” Opt. Mater. 29, 503–509 (2007).
[Crossref]

Photo. Res. (1)

L. Kong, G. Xie, P. Yuan, L. Qian, S. Wang, H. Yu, and H. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photo. Res. 3, A47–A50 (2015).
[Crossref]

Phys. Rev. (2)

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

Phys. Rev. B. (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorgé, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3  μm,” Phys. Rev. B. 61, 5280–5292 (2000).
[Crossref]

Proc. SPIE (1)

W. Zhang, L. Rong, J. Ren, Y. Jia, and S. Qian, “Judd-Ofelt analysis and mid-infrared emission properties of Ho3+-Yb3+ co-doped tellurite oxy-halide glasses,” Proc. SPIE 8906, 89060 (2013).

Solid State Commun. (1)

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “Emission performance in Ho3+ doped fluorophosphates glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–1220 (2009).
[Crossref]

Soviet J. Glass Phys. Chem. (1)

E. V. Kolobkova, “Raman-spectroscopy study of the structure of niobium germanate glasses,” Soviet J. Glass Phys. Chem. 13, 176–181 (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Deconvolution of Raman spectrum of SG glass using symmetric Gaussian functions.
Fig. 2.
Fig. 2. Absorption spectra of Tm 3 + single-doped and Tm 3 + / Ho 3 + co-doped silicate-germanate glasses in the range of 400–2200 nm.
Fig. 3.
Fig. 3. Fluorescence spectra of the Tm 3 + / Ho 3 + co-doped silicate-germanate glasses.
Fig. 4.
Fig. 4. Energy level diagrams and energy transfer sketch map of Tm 3 + and Ho 3 + ions.
Fig. 5.
Fig. 5. Emission cross sections of silicate-germanate glasses doped with 1.5 mol% Tm 2 O 3 and 1 mol% Ho 2 O 3 .
Fig. 6.
Fig. 6. (a) Fluorescence decay curve of Tm 3 + / Ho 3 + co-doped glass sample from Tm 3 + : F 4 3 H 6 3 . Inset shows the decay curve of Tm 3 + singly doped glass sample. (b) Fluorescence decay curve of Tm 3 + / Ho 3 + co-doped glass samples from Ho 3 + : I 7 5 I 8 5 .

Tables (5)

Tables Icon

Table 1. Compositions of the Prepared Glasses

Tables Icon

Table 2. Physical and Thermal Properties of Silicate-Germanate Glasses

Tables Icon

Table 3. J-O intensity Parameters ( Ω λ , λ = 2 , 4, 6) ( × 10 20    cm 2 ) of Ho 3 + Ions in Various Glass Hosts

Tables Icon

Table 4. Spontaneous Transition Probability A rad , Branching Ratio β , and Radiative Lifetime τ rad for Different Excited Levels of Ho 3 + in Silicate-Germanate Glass

Tables Icon

Table 5. Peak Cross Section σ e peak , FWHM, Radiative Lifetime τ m , σ e peak × FWHM and σ e peak × τ m of I 7 5 I 8 5 Transition of Ho 3 + in Different Glass Samples

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H 6 3 ( Tm 3 + ) + h v ( 808    nm ) H 4 3 ( Tm 3 + )    ( GSA ) H 4 3 ( Tm 3 + ) + H 6 3 ( Tm 3 + ) F 4 3 ( Tm 3 + ) + F 4 3 ( Tm 3 + )    ( CR ) F 4 3 ( Tm 3 + ) H 6 3 ( Tm 3 + ) + h v ( 1.8    μm )    ( emission ) F 4 3 ( Tm 3 + ) + I 8 5 ( Ho 3 + ) H 6 3 ( Tm 3 + ) + I 7 5 ( Ho 3 + )    ( ET ) I 7 5 ( Ho 3 + ) I 8 5 ( Ho 3 + ) + h v ( 2    μm )    ( emission )
σ em ( λ ) = σ abs ( λ ) × Z l Z u × exp [ h c k T × ( 1 λ Z L 1 λ ) ] ,
σ abs ( λ ) = 2.303 log ( I 0 / I ) N l ,
σ em ( λ ) = λ 4 A rad 8 π c n 2 × λ I ( λ ) λ I ( λ ) d λ ,
η = 1 τ Tm / Ho τ Tm .
W ET = 1 τ Tm / Ho 1 τ Tm ,
Q.E. = τ obs τ rad ,

Metrics