Abstract

Electromagnetic vortices, which describe the orbital angular momentum (OAM) carrying waves with a helical phase front, have recently attracted much interest in a radio frequency domain due to their potential applications in many diverse areas. In an OAM-based scenario, the antenna for OAM mode multiplexing/demultiplexing plays an essential role in controlling the overall system performance. In this paper, we demonstrated theoretically and experimentally an easily realized OAM antenna based on the traveling-wave circular loop structure for efficiently multiplexing/demultiplexing multiple OAM modes; in addition, its general propagation characteristics including the polarization, divergence, and radiation pattern are mathematically analyzed. Schemes for antenna size reduction and various radiation pattern manipulations have also been discussed to realize a more flexible and compact system.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Orbital angular momentum generation method based on transformation electromagnetics

Rui Feng, Jianjia Yi, Shah Nawaz Burokur, Lei Kang, Hailin Zhang, and Douglas H. Werner
Opt. Express 26(9) 11708-11717 (2018)

All-dielectric transformation medium mimicking a broadband converging lens

Tao Liu, Rui Feng, Jianjia Yi, Shah Nawaz Burokur, Chunxu Mao, Hailin Zhang, and Douglas H. Werner
Opt. Express 26(16) 20331-20341 (2018)

Optical communications using orbital angular momentum beams

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi
Adv. Opt. Photon. 7(1) 66-106 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Loudon and C. Baxter, “Contributions of John Henry Poynting to the understanding of radiation pressure,” Proc. Royal Soc. London A 468, 1825–1838 (2012).
    [Crossref]
  2. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  3. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref]
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [Crossref]
  6. B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
    [Crossref]
  7. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
    [Crossref]
  8. O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antennas Propag. 60, 1126–1131 (2012).
    [Crossref]
  9. X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
    [Crossref]
  10. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref]
  11. M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341, 537–540 (2013).
    [Crossref]
  12. K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
    [Crossref]
  13. M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [Crossref]
  14. R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
    [Crossref]
  15. E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
    [Crossref]
  16. A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48, 1365–1366 (2012).
    [Crossref]
  17. S. Zheng, X. Zhang, X. Jin, and H. Chi, “Orbital angular momentum generation using a circular wire loop antenna,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), paper OF3A.1.
  18. S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity,” in IEEE International Conference on Computational Electromagnetics (ICCEM), Hong Kong, (2015), pp. 239–240.
  19. W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).
  20. S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
    [Crossref]
  21. D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).
  22. M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
    [Crossref]
  23. C. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543–1545 (1999).
    [Crossref]

2016 (1)

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

2015 (6)

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
[Crossref]

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

2014 (2)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

2013 (1)

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

2012 (4)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antennas Propag. 60, 1126–1131 (2012).
[Crossref]

R. Loudon and C. Baxter, “Contributions of John Henry Poynting to the understanding of radiation pressure,” Proc. Royal Soc. London A 468, 1825–1838 (2012).
[Crossref]

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48, 1365–1366 (2012).
[Crossref]

2011 (1)

2007 (1)

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

2004 (1)

1999 (1)

1994 (1)

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Ahmed, N.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Allen, B.

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48, 1365–1366 (2012).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Bao, C.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Barnett, S.

Barnett, S. M.

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

Baxter, C.

R. Loudon and C. Baxter, “Contributions of John Henry Poynting to the understanding of radiation pressure,” Proc. Royal Soc. London A 468, 1825–1838 (2012).
[Crossref]

Beijersbergen, M.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Bergman, J.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Boyd, R. W.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Brousseau, C.

R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Cao, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Capet, N.

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

Carozzi, T. D.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Chabory, A.

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

Chen, Y.

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

Cheng, Y.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

Chi, H.

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

S. Zheng, X. Zhang, X. Jin, and H. Chi, “Orbital angular momentum generation using a circular wire loop antenna,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), paper OF3A.1.

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity,” in IEEE International Conference on Computational Electromagnetics (ICCEM), Hong Kong, (2015), pp. 239–240.

Coerwinkel, R.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Courtial, J.

Edfors, O.

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antennas Propag. 60, 1126–1131 (2012).
[Crossref]

Emile, O.

R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Franke-Arnold, S.

Gibson, G.

Hu, Y.

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

Huang, H.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Hui, X.

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
[Crossref]

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity,” in IEEE International Conference on Computational Electromagnetics (ICCEM), Hong Kong, (2015), pp. 239–240.

Ibragimov, N. H.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Istomin, Y. N.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jin, X.

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity,” in IEEE International Conference on Computational Electromagnetics (ICCEM), Hong Kong, (2015), pp. 239–240.

S. Zheng, X. Zhang, X. Jin, and H. Chi, “Orbital angular momentum generation using a circular wire loop antenna,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), paper OF3A.1.

Johansson, A. J.

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antennas Propag. 60, 1126–1131 (2012).
[Crossref]

Khamitova, R.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Kristensen, M.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Lavery, M. P.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

Lavery, M. P. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Li, L.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Li, X.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

Liu, K.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

Loudon, R.

R. Loudon and C. Baxter, “Contributions of John Henry Poynting to the understanding of radiation pressure,” Proc. Royal Soc. London A 468, 1825–1838 (2012).
[Crossref]

Mahdjoub, K.

R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Mari, E.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Ménard, A.

R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Miatto, F. M.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Molisch, A. F.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Nguyen, D. K.

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

Niemiec, R.

R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Oldoni, M.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

Padgett, M.

Padgett, M. J.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

Palacin, B.

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

Palmer, K.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Parisi, G.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

Pas’ko, V.

Pascal, O.

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

Qin, Y.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

Ravanelli, R. A.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

Ren, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Romanato, F.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Saghafi, S.

Sheppard, C.

Sjoholm, J.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Sokoloff, J.

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

Speirits, F. C.

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

Spinello, F.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Spreeuw, R.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Tennant, A.

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48, 1365–1366 (2012).
[Crossref]

Then, H.

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Thidé, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Tur, M.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Vasnetsov, M.

Wang, H.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

Willner, A. E.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Woerdman, J.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Xie, G.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Yan, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Yang, Z.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

Yao, A. M.

Zeilinger, A.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Zhang, W.

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

Zhang, X.

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

S. Zheng, X. Zhang, X. Jin, and H. Chi, “Orbital angular momentum generation using a circular wire loop antenna,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), paper OF3A.1.

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity,” in IEEE International Conference on Computational Electromagnetics (ICCEM), Hong Kong, (2015), pp. 239–240.

Zhao, Z.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Zheng, S.

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

S. Zheng, X. Zhang, X. Jin, and H. Chi, “Orbital angular momentum generation using a circular wire loop antenna,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), paper OF3A.1.

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity,” in IEEE International Conference on Computational Electromagnetics (ICCEM), Hong Kong, (2015), pp. 239–240.

Adv. Opt. Photon. (1)

Electron. Lett. (1)

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48, 1365–1366 (2012).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (3)

R. Niemiec, C. Brousseau, K. Mahdjoub, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wireless Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-field experimental verification of separation of OAM channels,” IEEE Antennas Wireless Propag. Lett. 14, 556–558 (2015).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wireless Propag. Lett. 14, 711–714 (2015).
[Crossref]

IEEE Commun. Lett. (1)

W. Zhang, S. Zheng, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Orbital angular momentum based communications with partial arc sampling receiving,” IEEE Commun. Lett. 20, 1381–1384 (2016).

IEEE Trans. Antennas Propag. (2)

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna,” IEEE Trans. Antennas Propag. 63, 1530–1536 (2015).
[Crossref]

O. Edfors and A. J. Johansson, “Is orbital angular momentum (OAM) based radio communication an unexploited area?” IEEE Trans. Antennas Propag. 60, 1126–1131 (2012).
[Crossref]

Nat. Commun. (1)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

New J. Phys. (2)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17, 023011 (2015).
[Crossref]

Opt. Commun. (1)

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (1)

B. Thidé, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701 (2007).
[Crossref]

Proc. Royal Soc. London A (1)

R. Loudon and C. Baxter, “Contributions of John Henry Poynting to the understanding of radiation pressure,” Proc. Royal Soc. London A 468, 1825–1838 (2012).
[Crossref]

Radio Sci. (1)

D. K. Nguyen, O. Pascal, J. Sokoloff, A. Chabory, B. Palacin, and N. Capet, “Antenna gain and link budget for waves carrying orbital angular momentum,” Radio Sci. 50, 1165–1175 (2015).

Sci. Rep. (1)

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum mode antennas,” Sci. Rep. 5, 10148 (2015).
[Crossref]

Science (1)

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using lights orbital angular momentum,” Science 341, 537–540 (2013).
[Crossref]

Other (3)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

S. Zheng, X. Zhang, X. Jin, and H. Chi, “Orbital angular momentum generation using a circular wire loop antenna,” in International Photonics and OptoElectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2014), paper OF3A.1.

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity,” in IEEE International Conference on Computational Electromagnetics (ICCEM), Hong Kong, (2015), pp. 239–240.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Mathematical model of the circular loop current of I 0 e j l ϕ . I 0 represents the constant magnitude of either an electric current or a magnetic current.
Fig. 2.
Fig. 2. Evolution of the polarization states for the twisted radio waves with increasing radius of θ ranging from 0° to 90°. Reprinted with permission from [20]. All rights reserved.
Fig. 3.
Fig. 3. Link budgets of | l | = 1 , 2, 3, 4, and 5, respectively. D [ 10 λ , 100000 λ ] ; f = 10    GHz ; and a = 5 λ .
Fig. 4.
Fig. 4. (a) Radiator with a ring-slot loaded on its narrow wall. The angle between two feeding ports (EPA and EPB) is γ . The outer radius and the inner radius of the radiator are a and b , respectively. (b) Explosion view of the metal resonator based parabolic antenna. Reprinted with permission from [9]. All rights reserved.
Fig. 5.
Fig. 5. (a) Simulated four-OAM-antenna model. (b) Partially enlarged sectional view of the dual concentrically stacked radiators where P 1 , 2 and P 3 , 4 are two pairs of feeding ports for generating l = ± 2 and l = ± 3 , respectively, and the angle, γ , between the two feeding ports is 135° and 90° for l = ± 2 and l = ± 3 , respectively.
Fig. 6.
Fig. 6. S -parameters of the four-OAM-mode antenna. S i i in (a) and S j i in (b) indicate the reflection and isolation, respectively.
Fig. 7.
Fig. 7. Simulated near-field radiation patterns for OAM modes of l = 2 , + 2 , 3 , and + 3 , respectively, from left to right. (a)–(d) Simulated transverse phase patterns. (e)–(h) Simulated transverse intensity patterns.
Fig. 8.
Fig. 8. Normalized radiation pattern of l = + 5 as a function of different outer radius of a (mm) at an operating frequency of 10 GHz.
Fig. 9.
Fig. 9. Schematics (cross section of x z plane) of the two cavities. (a) Air-filled cavity. (b) Dielectric-filled cavity.
Fig. 10.
Fig. 10. Far-field radiation patterns of the two radiators. (a) Air-filled radiator. (b) Dielectric-filled radiator.
Fig. 11.
Fig. 11. Electric fields (real part) of the generated vortices waves with OAM mode of l = + 5 at x y plane. (a) Air-filled radiator. (b) Dielectric-filled radiator.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

{ E ρ = C 0 j k 2 cos 2 θ 2 ω ϵ r e j k r e j l ϕ ( J l 1 ( x ) + J l + 1 ( x ) ) E ϕ = C 0 k 2 2 ω ϵ r e j k r e j l ϕ ( J l 1 ( x ) J l + 1 ( x ) ) E z = C 0 j k 2 sin θ cos θ 2 ω ϵ r e j k r e j l ϕ ( J l 1 ( x ) + J l + 1 ( x ) ) ,
{ H ρ = C 0 k cos θ 2 r e j k r e j l ϕ ( J l 1 ( x ) J l + 1 ( x ) ) H ϕ = j C 0 k cos θ 2 r e j k r e j l ϕ ( J l 1 ( x ) + J l + 1 ( x ) ) H z = C 0 k sin θ 2 r e j k r e j l ϕ ( J l 1 ( x ) J l + 1 ( x ) ) ,
η ( ϕ , θ ) = E ϕ E ρ = 1 j cos 2 θ f ( x ) ,
L | l | = | 0 a 0 2 π E ϕ e j l ϕ ρ d ϕ d ρ | z = D 2 .
k c = 2 π f μ 0 ϵ r ,
2 E + k c 2 E = 0 , 2 H + k c 2 H = 0 .
U ( r , ϕ , z ) = U 0 [ J l ( k c r ) N l ( k c a ) J l ( k c a ) N l ( k c r ) ] cos ( l ϕ ) ,
V ( r , ϕ , z ) = 0 ,
J l ( k c b ) N l ( k c a ) = J l ( k c a ) N l ( k c b ) .
E z ( l ) j l E 0 e j l ϕ e j k r J l ( k 0 a sin θ ) ,
γ = ( 2 m + 1 ) π 2 | l | , m = 0 , 1 , 2 , , l 1 .
G ( θ , ϕ ) = E 0 2 J l 2 ( k 0 a sin θ ) .
θ M = arg max θ { J l 2 ( k 0 a sin θ ) } .

Metrics