Abstract

We experimentally demonstrate a 16×16 reconfigurably nonblocking optical switch fabric using a Benes architecture. The switch fabric consists of 56 2×2 Mach–Zehnder interferometer based elementary switches, with each integrated with a pair of waveguide microheaters. The average on-chip insertion loss is 5.2  dB for both of the “all-cross” and the “all-bar” states, with a loss variation of 1 dB over all routing paths. The cross talk for all switching states is better than 30  dB. The switching time of the switch element is about 22 μs. The switching functionality is verified by transmission of a 40  Gb/s quadrature phase-shift keying optical signal.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers

Liangjun Lu, Shuoyi Zhao, Linjie Zhou, Dong Li, Zuxiang Li, Minjuan Wang, Xinwan Li, and Jianping Chen
Opt. Express 24(9) 9295-9307 (2016)

4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers

Zuxiang Li, Linjie Zhou, Liangjun Lu, Shuoyi Zhao, Dong Li, and Jianping Chen
Photon. Res. 4(1) 21-26 (2016)

Compact InGaAsP/InP nonblocking 4 × 4 trench-coupler-based Mach–Zehnder photonic switch fabric

Ke Liu, Le Wang, Chenglong Zhang, Qingyu Ma, and Bing Qi
Appl. Opt. 57(14) 3838-3846 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. V. N. Index, “Forecast and Methodology, 2014–2019,” (Cisco, 2015).
  2. D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
    [Crossref]
  3. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
    [Crossref]
  4. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
    [Crossref]
  5. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16 × 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19, 371–379 (2001).
    [Crossref]
  6. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).
  7. R. Stabile, P. DasMahapatra, and K. Williams, “First 4 × 4 InP switch matrix based on third-order micro-ring-resonators,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C. 3.
  8. S. Tomofuji, S. Matsuo, T. Kakitsuka, and K.-I. Kitayama, “Dynamic switching characteristics of InGaAsP/InP multimode interference optical waveguide switch,” Opt. Express 17, 23380–23388 (2009).
    [Crossref]
  9. L. Yang, Y. Xia, F. Zhang, Q. Chen, J. Ding, P. Zhou, and L. Zhang, “Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach–Zehnder optical switches,” Opt. Lett. 40, 1402–1405 (2015).
    [Crossref]
  10. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref]
  11. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
    [Crossref]
  12. L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 × 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
    [Crossref]
  13. Z. Li, L. Zhou, L. Lu, S. Zhao, D. Li, and J. Chen, “4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers,” Photon. Res. 4, 21–26 (2016).
    [Crossref]
  14. L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012).
    [Crossref]
  15. J. Xing, Z. Li, P. Zhou, X. Xiao, J. Yu, and Y. Yu, “Nonblocking 4 × 4 silicon electro-optic switch matrix with push-pull drive,” Opt. Lett. 38, 3926–3929 (2013).
    [Crossref]
  16. L. Qiao, W. Tang, and T. Chu, “16 × 16 non-blocking silicon electro-optic switch based on Mach–Zehnder interferometers,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C.2.
  17. L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” Photon. J. 7, 1–8 (2015).
  18. L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “Silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” Photon. Technol. Lett. 27, 2457–2460 (2015).
    [Crossref]
  19. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
    [Crossref]
  20. B. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, and C. Reinholm, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
    [Crossref]
  21. T. Chu, L. Qiao, and W. Tang, “High-speed 8 × 8 electro-optic switch matrix based on silicon PIN structure waveguides,” in 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 123–124.
  22. L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with-type microheaters,” Photon. J. 5, 6601211 (2013).
    [Crossref]

2016 (3)

2015 (6)

2014 (3)

2013 (2)

J. Xing, Z. Li, P. Zhou, X. Xiao, J. Yu, and Y. Yu, “Nonblocking 4 × 4 silicon electro-optic switch matrix with push-pull drive,” Opt. Lett. 38, 3926–3929 (2013).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with-type microheaters,” Photon. J. 5, 6601211 (2013).
[Crossref]

2012 (1)

2009 (1)

2001 (1)

Assefa, S.

Baks, C. W.

Barwicz, T.

Bergman, K.

D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
[Crossref]

Chan, V. W.

D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
[Crossref]

Chen, J.

Z. Li, L. Zhou, L. Lu, S. Zhao, D. Li, and J. Chen, “4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers,” Photon. Res. 4, 21–26 (2016).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 × 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” Photon. J. 7, 1–8 (2015).

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “Silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with-type microheaters,” Photon. J. 5, 6601211 (2013).
[Crossref]

Chen, L.

Chen, Q.

Chen, Y.-K.

Chiba, T.

Chu, T.

T. Chu, L. Qiao, and W. Tang, “High-speed 8 × 8 electro-optic switch matrix based on silicon PIN structure waveguides,” in 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 123–124.

L. Qiao, W. Tang, and T. Chu, “16 × 16 non-blocking silicon electro-optic switch based on Mach–Zehnder interferometers,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C.2.

Cong, G.

DasMahapatra, P.

R. Stabile, P. DasMahapatra, and K. Williams, “First 4 × 4 InP switch matrix based on third-order micro-ring-resonators,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C. 3.

Ding, J.

Goh, T.

Green, W. M.

Han, S.

Hattori, K.

Himeno, A.

Igarashi, Y.

Ikeda, K.

Index, C. V. N.

C. V. N. Index, “Forecast and Methodology, 2014–2019,” (Cisco, 2015).

Itoh, M.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).

Kakitsuka, T.

Kawashima, H.

Khater, M. H.

Kilper, D.

D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
[Crossref]

Kim, S. H.

Kimura, T.

Kitayama, K.-I.

Koshino, K.

Kuchta, D. M.

Lee, B.

Li, D.

Li, S.

Li, X.

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 × 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” Photon. J. 7, 1–8 (2015).

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “Silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

Li, Z.

Lu, L.

Z. Li, L. Zhou, L. Lu, S. Zhao, D. Li, and J. Chen, “4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers,” Photon. Res. 4, 21–26 (2016).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 × 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” Photon. J. 7, 1–8 (2015).

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “Silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with-type microheaters,” Photon. J. 5, 6601211 (2013).
[Crossref]

Masahara, M.

Matsukawa, T.

Matsumaro, K.

Matsuo, S.

Monga, I.

D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
[Crossref]

Muller, R. S.

Namiki, S.

Ohmori, Y.

Ohno, M.

Ohtsuka, M.

Okuno, M.

Ooba, N.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).

Porter, G.

D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
[Crossref]

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “16 × 16 non-blocking silicon electro-optic switch based on Mach–Zehnder interferometers,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C.2.

T. Chu, L. Qiao, and W. Tang, “High-speed 8 × 8 electro-optic switch matrix based on silicon PIN structure waveguides,” in 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 123–124.

Quack, N.

Rauschenbach, K.

D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
[Crossref]

Reinholm, C.

Rimolo-Donadio, R.

Rylyakov, A. V.

Seki, M.

Seok, T. J.

Shibata, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).

Sohma, S.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).

Stabile, R.

R. Stabile, P. DasMahapatra, and K. Williams, “First 4 × 4 InP switch matrix based on third-order micro-ring-resonators,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C. 3.

Suda, S.

Sugaya, T.

Suzuki, K.

Tadokoro, H.

Takahashi, H.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).

Tang, W.

L. Qiao, W. Tang, and T. Chu, “16 × 16 non-blocking silicon electro-optic switch based on Mach–Zehnder interferometers,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C.2.

T. Chu, L. Qiao, and W. Tang, “High-speed 8 × 8 electro-optic switch matrix based on silicon PIN structure waveguides,” in 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 123–124.

Tanizawa, K.

Tomofuji, S.

Toyama, M.

Wang, M.

Watanabe, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).

Williams, K.

R. Stabile, P. DasMahapatra, and K. Williams, “First 4 × 4 InP switch matrix based on third-order micro-ring-resonators,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C. 3.

Wu, M. C.

Xia, Y.

Xiao, X.

Xing, J.

Yanagihara, M.

Yang, L.

Yasu, M.

Yokoyama, N.

Yoo, B.-W.

Yu, J.

Yu, Y.

Zhang, F.

Zhang, L.

Zhang, X.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with-type microheaters,” Photon. J. 5, 6601211 (2013).
[Crossref]

Zhao, S.

Zhou, L.

Z. Li, L. Zhou, L. Lu, S. Zhao, D. Li, and J. Chen, “4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers,” Photon. Res. 4, 21–26 (2016).
[Crossref]

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 × 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “Silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” Photon. J. 7, 1–8 (2015).

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with-type microheaters,” Photon. J. 5, 6601211 (2013).
[Crossref]

Zhou, P.

J. Lightwave Technol. (3)

Opt. Express (5)

Opt. Lett. (2)

Opt. Photon. News (1)

D. Kilper, K. Bergman, V. W. Chan, I. Monga, G. Porter, and K. Rauschenbach, “Optical networks come of age,” Opt. Photon. News 25(9), 50–57 (2014).
[Crossref]

Optica (2)

Photon. J. (2)

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” Photon. J. 7, 1–8 (2015).

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with-type microheaters,” Photon. J. 5, 6601211 (2013).
[Crossref]

Photon. Res. (1)

Photon. Technol. Lett. (1)

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “Silicon optical switches based on double-ring-assisted Mach–Zehnder interferometers,” Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

Other (5)

C. V. N. Index, “Forecast and Methodology, 2014–2019,” (Cisco, 2015).

L. Qiao, W. Tang, and T. Chu, “16 × 16 non-blocking silicon electro-optic switch based on Mach–Zehnder interferometers,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C.2.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (OSA, 2006).

R. Stabile, P. DasMahapatra, and K. Williams, “First 4 × 4 InP switch matrix based on third-order micro-ring-resonators,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1C. 3.

T. Chu, L. Qiao, and W. Tang, “High-speed 8 × 8 electro-optic switch matrix based on silicon PIN structure waveguides,” in 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 123–124.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the 16×16 optical switch. Inset shows the structure of the MZI switch element.
Fig. 2.
Fig. 2. (a) Optical microscope image of the switch chip. The inset shows the zoomed-in view of the MZI switch elements. (b) Photo of the 16×16 switch in a sealed metal box. (c) Photo of the 16×16 switch after electrical and optical package. The inset shows the zoomed-in view of a fiber array attached to the switch chip using UV-curable adhesive.
Fig. 3.
Fig. 3. Transmission spectra at different TO power consumptions for the cross port and the bar port of an MZI switch element.
Fig. 4.
Fig. 4. Transmission spectra of all optical paths at the all-cross and the all-bar states of the 16×16 switch.
Fig. 5.
Fig. 5. Measured transmission spectra of the 16×16 switch at the all-cross state.
Fig. 6.
Fig. 6. Measured transmission spectra of the 16×16 switch at the all-bar state.
Fig. 7.
Fig. 7. Time-domain optical response of the switch element. (a) Applied square-wave electrical drive signal. (b) Measured optical waveform. The dashed lines indicate the 10% and 90% power levels.
Fig. 8.
Fig. 8. Measured constellation diagrams of a 40  Gb/s QPSK signal. (a) BtB transmission, (b) the all cross state, and (c) the all bar state.

Tables (2)

Tables Icon

Table 1. Power Consumption at the All-Cross and the All-Bar Statesa

Tables Icon

Table 2. Performance Comparison of Reported High-Port-Count Silicon Switch Fabrics

Metrics