Abstract

In this paper, a multidimensional tuning method of the silica microcapillary resonator (MCR) is proposed and demonstrated whereby the extinction ratio (ER) as well as the resonant wavelength can be individually controlled. An ER tuning range of up to 17 dB and a maximum tuning sensitivity of 0.3 dB/μm are realized due to the tapered profile of the silica optical microfiber (MF) when the MF is adjusted along its axial direction. Compared to direct tuning of the coupling gap, this method could lower the requirement for the resolution of displacement stage to micrometers. When the MF is adjusted along the axial direction of the silica microcapillary, a resonance shift of 3.06 nm and maximum tuning sensitivity of 0.01 nm/μm are achieved. This method avoids the use of an applied external field to control the silica microresonators. Moreover, when air is replaced by ethanol and water in the core of the silica microcapillary, a maximum resonance shift of 5.22 nm is also achieved to further enlarge the resonance tuning range. Finally, a microbubble resonator with a higher Q factor is also fabricated to achieve an ER tuning range of 8.5 dB. Our method fully takes advantage of the unique structure of the MCR to separately and easily tune its key parameters, and may broaden its applications in optical signal processing and sensing.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable polarization beam splitter based on optofluidic ring resonator

Song Zhu, Yang Liu, Lei Shi, Xinbiao Xu, Shixing Yuan, Ningyu Liu, and Xinliang Zhang
Opt. Express 24(15) 17511-17521 (2016)

Broadband laser-tuned whispering gallery mode in a micro-structured fiber embedded with iron oxide nanoparticles

Ming Deng, Yufan Wang, LeiGuang Liu, and Maoru Qin
Appl. Opt. 57(16) 4563-4568 (2018)

Localization of light in an optical microcapillary induced by a droplet

Tabassom Hamidfar, Kirill V. Tokmakov, Brian J. Mangan, Robert S. Windeler, Artemiy V. Dmitriev, Dashiell L. P. Vitullo, Pablo Bianucci, and Michael Sumetsky
Optica 5(4) 382-388 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
    [Crossref]
  2. Q. Lu, M. Li, J. Liao, S. Liu, X. Wu, L. Liu, and L. Xu, “Strong coupling of hybrid and plasmonic resonances in liquid core plasmonic micro-bubble cavities,” Opt. Lett. 40, 5842–5845 (2016).
    [Crossref]
  3. L. Zou, Y. Huang, X. Lv, B. Liu, H. Long, Y. Yang, J.-L. Xiao, and Y. Du, “Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing,” Photon. Res. 2, 177–179 (2014).
    [Crossref]
  4. M. S. Murib, E. Yüce, O. Gürlü, and A. Serpengüze, “Polarization behavior of elastic scattering from a silicon microsphere coupled to an optical fiber,” Photon. Res. 2, 45–50 (2014).
    [Crossref]
  5. W. Jin, X. Yi, Y. Hu, B. Li, and Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013).
    [Crossref]
  6. B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
    [Crossref]
  7. N. Singh, D. D. Hudson, R. Wang, E. C. Mägi, D.-Y. Choi, C. Grillet, B. L. Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23, 8681–8686 (2015).
    [Crossref]
  8. X. Jiang, C. Zou, L. Wang, Q. Gong, and Y. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
    [Crossref]
  9. T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
    [Crossref]
  10. A. François, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24, 12466–12477 (2016).
    [Crossref]
  11. X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
    [Crossref]
  12. B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
    [Crossref]
  13. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
    [Crossref]
  14. S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23, 2577–2590 (2015).
    [Crossref]
  15. A. Lee, T. Mills, and Y. Xu, “Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator,” Opt. Express 23, 7351–7365 (2015).
    [Crossref]
  16. J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
    [Crossref]
  17. Y. Yang, S. Saurabh, J. M. Ward, and S. N. Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24, 294–299 (2015).
    [Crossref]
  18. T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23, 17067–17076 (2015).
    [Crossref]
  19. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref]
  20. J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  21. L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  22. N. Riesen, W. Zhang, and T. M. Monro, “Dispersion analysis of whispering gallery mode microbubble resonators,” Opt. Express 24, 8832–8847 (2016).
    [Crossref]
  23. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
    [Crossref]
  24. C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2014).
  25. K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
    [Crossref]
  26. X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
    [Crossref]
  27. Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
    [Crossref]
  28. T. Ioppolo, U. Ayaz, and M. V. Ötügen, “Tuning of whispering gallery modes of spherical resonators using an external electric field,” Opt. Express 17, 16465–16479 (2009).
    [Crossref]
  29. A. Watkins, J. Ward, and S. N. Chormaic, “Thermo-optical tuning of whispering gallery modes in Erbium: Ytterbium doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).
    [Crossref]
  30. I. M. White, N. M. Hanumegowda, H. Oveys, and X. Fan, “Tuning whispering gallery modes in optical microspheres with chemical etching,” Opt. Express 13, 10754–10759 (2005).
    [Crossref]
  31. W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26, 166–168 (2001).
    [Crossref]
  32. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
    [Crossref]
  33. K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, “Mechanical tuning of whispering gallery modes over a 0.5  THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966–17972 (2011).
    [Crossref]
  34. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868 (2010).
    [Crossref]
  35. R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
    [Crossref]
  36. Z. Zhou, F. Shu, Z. Shen, C. Dong, and G. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. Chin. Phys. Mech. Astron. 58, 114208 (2015).
    [Crossref]
  37. P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
    [Crossref]
  38. Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
    [Crossref]
  39. X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  40. Y. Liu, T. Chang, and A. E. Craig, “Coupled mode theory for modeling microring resonators,” Opt. Eng. 44, 084601 (2005).
  41. S. J. Emelett and R. A. Soref, “Analysis of dual-microring-resonator cross-connect switches and modulators,” Opt. Express 13, 7840–7853 (2005).
    [Crossref]
  42. L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008).
    [Crossref]
  43. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  44. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [Crossref]
  45. C. Zou, Y. Yang, C. Dong, Y. Xiao, X. Wu, Z. Han, and G. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
    [Crossref]
  46. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17, 11916–11925 (2009).
    [Crossref]

2016 (4)

2015 (8)

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

Z. Zhou, F. Shu, Z. Shen, C. Dong, and G. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. Chin. Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23, 2577–2590 (2015).
[Crossref]

A. Lee, T. Mills, and Y. Xu, “Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator,” Opt. Express 23, 7351–7365 (2015).
[Crossref]

Y. Yang, S. Saurabh, J. M. Ward, and S. N. Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24, 294–299 (2015).
[Crossref]

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23, 17067–17076 (2015).
[Crossref]

N. Singh, D. D. Hudson, R. Wang, E. C. Mägi, D.-Y. Choi, C. Grillet, B. L. Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23, 8681–8686 (2015).
[Crossref]

2014 (7)

2013 (5)

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

W. Jin, X. Yi, Y. Hu, B. Li, and Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013).
[Crossref]

2012 (3)

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

A. Watkins, J. Ward, and S. N. Chormaic, “Thermo-optical tuning of whispering gallery modes in Erbium: Ytterbium doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).
[Crossref]

R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
[Crossref]

2011 (1)

2010 (3)

2009 (2)

2008 (2)

2007 (1)

2006 (1)

2005 (3)

2004 (1)

2003 (1)

2001 (1)

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

1999 (1)

1998 (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Afshar, S. V.

Andrés, M. V.

Armani, D.

Arnold, S.

Ayaz, U.

Bahl, G.

Barbour, R. J.

Bowen, W. P.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Brawley, G. A.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Chang, T.

Y. Liu, T. Chang, and A. E. Craig, “Coupled mode theory for modeling microring resonators,” Opt. Eng. 44, 084601 (2005).

Chen, D.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chin, M. K.

Choi, D.-Y.

Chormaic, S. N.

Clements, W. R.

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Coppola, S.

Craig, A. E.

Y. Liu, T. Chang, and A. E. Craig, “Coupled mode theory for modeling microring resonators,” Opt. Eng. 44, 084601 (2005).

Davies, B. L.

Díez, A.

Dinyari, K. N.

Dong, C.

Z. Zhou, F. Shu, Z. Shen, C. Dong, and G. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. Chin. Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2014).

C. Zou, Y. Yang, C. Dong, Y. Xiao, X. Wu, Z. Han, and G. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
[Crossref]

Du, Y.

Dulashko, Y.

Eggleton, B. J.

Emelett, S. J.

Fan, X.

Ferraro, P.

Finizio, A.

François, A.

Fu, W.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2014).

Gardner, K.

Gimeno, B.

Golter, D. A.

Gong, Q.

X. Jiang, C. Zou, L. Wang, Q. Gong, and Y. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Gorodetsky, M. L.

Grillet, C.

Grilli, S.

Guo, G.

Gürlü, O.

Hall, J. M. M.

Han, K.

Han, Z.

Hanumegowda, N. M.

Hare, J.

Haroche, S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Henderson, M. R.

Holler, S.

Hu, Y.

Huang, Y.

Hudson, D. D.

Ilchenko, V. S.

Ioppolo, T.

Jiang, X.

X. Jiang, C. Zou, L. Wang, Q. Gong, and Y. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
[Crossref]

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Jin, W.

Khoshsima, M.

Kim, J. H.

Kippenberg, T.

Klitzing, W. V.

Knittel, J.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Kuzyk, M. C.

Lane, S.

Lee, A.

Lefevre-Seguin, V.

Li, B.

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

W. Jin, X. Yi, Y. Hu, B. Li, and Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013).
[Crossref]

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, M.

Li, Y.

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Liao, J.

Liu, B.

Liu, L.

Liu, S.

Liu, Y.

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
[Crossref]

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Y. Liu, T. Chang, and A. E. Craig, “Coupled mode theory for modeling microring resonators,” Opt. Eng. 44, 084601 (2005).

Long, G.

Long, H.

Long, R.

Lu, Q.

Lv, X.

Madden, S.

Madugani, R.

Mägi, E. C.

Mario, L. Y.

McAuslan, D. L.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Meldrum, A.

Mills, T.

Monro, T. M.

Murib, M. S.

Murugan, G. S.

Nicholls, S. J.

Oo, T.

Ötügen, M. V.

Oveys, H.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Pöllinger, M.

Pu, S.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
[Crossref]

Raimond, J.-M.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Rauschenbeutel, A.

Reynolds, T.

Riesen, N.

Riordan, J. D.

Saurabh, S.

Seguin, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Serpengüze, A.

Shao, L.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

Shen, Z.

Z. Zhou, F. Shu, Z. Shen, C. Dong, and G. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. Chin. Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2014).

Shi, K.

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Shi, L.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
[Crossref]

Shu, F.

Z. Zhou, F. Shu, Z. Shen, C. Dong, and G. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. Chin. Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Singh, N.

Soref, R. A.

Spillane, S.

Sumetsky, M.

Sun, F.

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

Swaim, J. D.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Teraoka, I.

Tong, L.

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Treussart, F.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Vahala, K.

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Velichansky, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Vespini, V.

Volikov, P. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Vollmer, F.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

Wang, H.

Wang, L.

X. Jiang, C. Zou, L. Wang, Q. Gong, and Y. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Wang, M.

Wang, P.

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, R.

Wang, W.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, Z.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
[Crossref]

Ward, J.

A. Watkins, J. Ward, and S. N. Chormaic, “Thermo-optical tuning of whispering gallery modes in Erbium: Ytterbium doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).
[Crossref]

Ward, J. M.

Watkins, A.

A. Watkins, J. Ward, and S. N. Chormaic, “Thermo-optical tuning of whispering gallery modes in Erbium: Ytterbium doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).
[Crossref]

West, P.

White, I. M.

Wilkinson, J. S.

Windeler, R. S.

Wu, X.

Xiao, J.-L.

Xiao, Y.

X. Jiang, C. Zou, L. Wang, Q. Gong, and Y. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

W. Jin, X. Yi, Y. Hu, B. Li, and Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013).
[Crossref]

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

C. Zou, Y. Yang, C. Dong, Y. Xiao, X. Wu, Z. Han, and G. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
[Crossref]

Xu, L.

Xu, X.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Xu, Y.

Yang, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, Q.

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

Yang, Y.

Yi, X.

Yu, X.

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Yüce, E.

Zamora, V.

Zervas, M. N.

Zhang, W.

Zhang, X.

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
[Crossref]

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Zhang, Y.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2014).

Zhao, P.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
[Crossref]

Zhou, Z.

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

Z. Zhou, F. Shu, Z. Shen, C. Dong, and G. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. Chin. Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zou, C.

X. Jiang, C. Zou, L. Wang, Q. Gong, and Y. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2014).

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

C. Zou, Y. Yang, C. Dong, Y. Xiao, X. Wu, Z. Han, and G. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
[Crossref]

Zou, L.

Adv. Mater. (2)

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

X. Yu, B. Li, P. Wang, L. Tong, X. Jiang, Y. Li, Q. Gong, and Y. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, and Q. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100, 021108 (2012).
[Crossref]

X. Jiang, Y. Xiao, Q. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

A. Watkins, J. Ward, and S. N. Chormaic, “Thermo-optical tuning of whispering gallery modes in Erbium: Ytterbium doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).
[Crossref]

Lab Chip (1)

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14, 3004–3010 (2014).
[Crossref]

Laser Photon. Rev. (1)

X. Jiang, C. Zou, L. Wang, Q. Gong, and Y. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Nat. Commun. (1)

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2014).

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Opt. Commun. (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. L. Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145, 86–90 (1998).
[Crossref]

Opt. Eng. (1)

Y. Liu, T. Chang, and A. E. Craig, “Coupled mode theory for modeling microring resonators,” Opt. Eng. 44, 084601 (2005).

Opt. Express (17)

S. J. Emelett and R. A. Soref, “Analysis of dual-microring-resonator cross-connect switches and modulators,” Opt. Express 13, 7840–7853 (2005).
[Crossref]

L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008).
[Crossref]

G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17, 11916–11925 (2009).
[Crossref]

K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, “Mechanical tuning of whispering gallery modes over a 0.5  THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966–17972 (2011).
[Crossref]

I. M. White, N. M. Hanumegowda, H. Oveys, and X. Fan, “Tuning whispering gallery modes in optical microspheres with chemical etching,” Opt. Express 13, 10754–10759 (2005).
[Crossref]

T. Ioppolo, U. Ayaz, and M. V. Ötügen, “Tuning of whispering gallery modes of spherical resonators using an external electric field,” Opt. Express 17, 16465–16479 (2009).
[Crossref]

A. François, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24, 12466–12477 (2016).
[Crossref]

N. Riesen, W. Zhang, and T. M. Monro, “Dispersion analysis of whispering gallery mode microbubble resonators,” Opt. Express 24, 8832–8847 (2016).
[Crossref]

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
[Crossref]

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23, 27260–27265 (2015).
[Crossref]

N. Singh, D. D. Hudson, R. Wang, E. C. Mägi, D.-Y. Choi, C. Grillet, B. L. Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23, 8681–8686 (2015).
[Crossref]

Y. Yang, S. Saurabh, J. M. Ward, and S. N. Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24, 294–299 (2015).
[Crossref]

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23, 17067–17076 (2015).
[Crossref]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
[Crossref]

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23, 2577–2590 (2015).
[Crossref]

A. Lee, T. Mills, and Y. Xu, “Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator,” Opt. Express 23, 7351–7365 (2015).
[Crossref]

Opt. Lett. (8)

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
[Crossref]

Q. Lu, M. Li, J. Liao, S. Liu, X. Wu, L. Liu, and L. Xu, “Strong coupling of hybrid and plasmonic resonances in liquid core plasmonic micro-bubble cavities,” Opt. Lett. 40, 5842–5845 (2016).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39, 3845–3848 (2014).
[Crossref]

W. V. Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefevre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26, 166–168 (2001).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868 (2010).
[Crossref]

R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
[Crossref]

Photon. Res. (3)

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Sci. Chin. Phys. Mech. Astron. (1)

Z. Zhou, F. Shu, Z. Shen, C. Dong, and G. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. Chin. Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Sci. Rep. (1)

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the multidimensional tuning method. The waist of the MF is about 1 μm and the minimum outer diameter of the silica microcapillary is about 53 μm with a wall thickness of about 2.5 μm.
Fig. 2.
Fig. 2. (a) Coupling efficiency as a function of the fiber taper diameter. (b) Transmission spectra of the silica MCR at different coupling spots along the gradient profile of the MF (moving distance S is 0, 10, 30, 50, 70, 90, 120, 150, and 170 μm, respectively, from high to low ER). (c) Transmission spectra of the silica MCR at around 1550 nm. (d) ER tuning as a function of the moving distance S.
Fig. 3.
Fig. 3. (a) Transmission spectra of the silica MCR at different coupling spots along the gradient profile of the silica microcapillary (the moving distance L is 0, 400, 500, and 560 μm, respectively). (b) Resonance tuning as a function of the moving distance L.
Fig. 4.
Fig. 4. Electric field in the MCR with wall thickness of (a), (b) 20 μm and (c), (d) about 2.5 μm. (e) Energy percentage of the WGM in the core as a function of the microcapillary wall thickness for the fundamental mode.
Fig. 5.
Fig. 5. Resonance tuning of the silica MCR with wall thickness of (a) about 2.5 μm and (b) about 2 μm.
Fig. 6.
Fig. 6. (a) Optical microscopic image of the microbubble resonator. (b) Transmission spectrum of the microbubble resonator. (c) ER tuning of a resonance around 1560.5 nm (the moving distance S is 0, 40, 90, 120, 180, 210, 270, 330, and 400 μm, respectively, from high to low ER). (d) ER tuning as a function of the moving distance S.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λR·RL·ΔL.
Em,l(r)={AJm(k0(l)n1r)(rr1)BJm(k0(l)n2r)+CHm(1)(k0(l)n2r)(r1<rr2)DHm(1)(k0(l)n3r)(r>r2),
Δλ=λneff·neffncore·Δncore,

Metrics