Abstract

Plasmonic grating structures have been shown effective at increasing near-field optical enhancement. A double-width plasmonic grating design is introduced, where each period has two alternating metal widths separated by a nanogap. With this new design, analysis has shown that plasmonic resonances couple between each metal section, resulting in even greater optical enhancement compared with single-width gratings. The geometry that gives the greatest optical enhancement has been determined with a computational model. This work demonstrates that the increased enhancement is due to hybridized modes that couple between the two grating segments.

© 2016 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [Crossref]
  2. Y. Jiao, L. H. Liu, and P.-F. Hsu, “Widening absorption band of grating structure with complex dual-groove grating,” J. Heat Transfer 135, 032701 (2013).
    [Crossref]
  3. J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302–2304 (2005).
    [Crossref]
  4. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006).
    [Crossref]
  5. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
    [Crossref]
  6. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
    [Crossref]
  7. A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B 40, S259–S272 (2007).
    [Crossref]
  8. K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46, 5703–5708 (2007).
    [Crossref]
  9. J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO_2 interface,” J. Opt. Soc. Am. B 24, 2268–2272 (2007).
    [Crossref]
  10. J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).
  11. C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure,” Opt. Commun. 283, 1763–1767 (2010).
    [Crossref]
  12. J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
    [Crossref]
  13. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref]
  14. Y. Mishima, H. Habara, and K. A. Tanaka, “Two plasmonic mode excitation using a double-step rectangle grating,” J. Opt. Soc. Am. B 32, 1804–1808 (2015).
    [Crossref]
  15. R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
    [Crossref]
  16. N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).
  17. N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
    [Crossref]
  18. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
    [Crossref]
  19. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2011).
    [Crossref]
  20. J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
    [Crossref]
  21. R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
    [Crossref]
  22. N.-F. Chiu, C.-D. Yang, Y.-L. Kao, and C.-J. Cheng, “Design of plasmonic circular grating with broadband absorption enhancements,” Proc. SPIE 9502, 950213 (2015).
    [Crossref]
  23. A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
    [Crossref]
  24. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007).
    [Crossref]
  25. J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
    [Crossref]
  26. H. J. Lee, A. W. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst 133, 596–601 (2008).
    [Crossref]
  27. H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors 10, 9630–9646 (2010).
    [Crossref]
  28. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16, 9781–9790 (2008).
    [Crossref]
  29. H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
    [Crossref]
  30. X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20, 945–950 (2010).
    [Crossref]
  31. Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
    [Crossref]
  32. P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
    [Crossref]
  33. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
    [Crossref]
  34. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16, 3114–3119 (2008).
    [Crossref]
  35. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express 19, 787–813 (2011).
    [Crossref]
  36. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
    [Crossref]
  37. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
    [Crossref]
  38. X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).
  39. X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15, 107–113 (2015).
    [Crossref]
  40. C. Lumdee, B. Yun, and P. G. Kik, “Gap-plasmon enhanced gold nanoparticle photoluminescence,” ACS Photon. 1, 1224–1230 (2014).
    [Crossref]
  41. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
    [Crossref]
  42. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
    [Crossref]
  43. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
    [Crossref]
  44. J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
    [Crossref]
  45. A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83, 193404 (2011).
    [Crossref]
  46. D. Natelson, Y. Li, and J. B. Herzog, “Nanogap structures: combining enhanced Raman spectroscopy and electronic transport,” Phys. Chem. Chem. Phys. 15, 5262–5275 (2013).
    [Crossref]
  47. T. Kawawaki, Y. Takahashi, and T. Tatsuma, “Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling,” J. Phys. Chem. C 117, 5901–5907 (2013).
    [Crossref]
  48. T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
    [Crossref]
  49. S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
    [Crossref]
  50. T. K. Manna and S. M. Mahajan, “Nanotechnology in the development of photovoltaic cells,” in International Conference on Clean Electrical Power (ICCEP) (2007), pp. 379–386.
  51. E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
    [Crossref]
  52. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
    [Crossref]
  53. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [Crossref]
  54. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19, 11256–11263 (2011).
    [Crossref]
  55. R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
    [Crossref]
  56. I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
    [Crossref]
  57. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
    [Crossref]
  58. J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
    [Crossref]
  59. A. W. Clark and J. M. Cooper, “Nanogap ring antennae as plasmonically coupled SERRS substrates,” Small 7, 119–125 (2011).
    [Crossref]
  60. W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
    [Crossref]
  61. M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
    [Crossref]
  62. Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).
  63. M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
    [Crossref]
  64. R. Gordon, D. Sinton, A. G. Brolo, and K. L. Kavanagh, “Plasmonic sensors based on nano-holes: technology and integration,” Proc. SPIE 6959, 695913 (2008).
    [Crossref]
  65. J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
    [Crossref]
  66. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [Crossref]
  67. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  68. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
    [Crossref]
  69. T. Vo-Dinh, H.-N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophoton. 3, 89–102 (2010).
    [Crossref]
  70. K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
    [Crossref]
  71. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
    [Crossref]
  72. A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
    [Crossref]
  73. S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
    [Crossref]
  74. S. J. Bauman, “Fabrication of sub-10  nm metallic structures via nanomasking technique for plasmonic enhancement applications,” MS thesis (University of Arkansas, 2015).
  75. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  76. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 2015).
  77. J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
    [Crossref]
  78. C. Saylor, E. Novak, D. Debu, and J. B. Herzog, “Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays,” J. Nanophoton. 9, 093053 (2015).
    [Crossref]
  79. A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
    [Crossref]
  80. C.-H. Lin, C. Hsieh, C.-G. Tu, Y. Kuo, H.-S. Chen, P.-Y. Shih, C.-H. Liao, Y.-W. Kiang, C. C. Yang, C.-H. Lai, G.-R. He, J.-H. Yeh, and T.-C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842–A856 (2014).
    [Crossref]
  81. X. H. Xiong, L. M. Zhan, and X. Ke, “Effects of grating slant angle on surface plasmon resonance and its applications for sensors,” Appl. Mech. Mater. 536–537, 342–345 (2014).
    [Crossref]
  82. F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
    [Crossref]
  83. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [Crossref]
  84. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  85. D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
    [Crossref]
  86. M. Sukharev and A. Nitzan, “Plasmon transmission through excitonic subwavelength gaps,” arXiv:1601.06325 [cond-mat, physics:physics] (2016).
  87. K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
    [Crossref]

2016 (2)

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

2015 (10)

A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
[Crossref]

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
[Crossref]

C. Saylor, E. Novak, D. Debu, and J. B. Herzog, “Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays,” J. Nanophoton. 9, 093053 (2015).
[Crossref]

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

Y. Mishima, H. Habara, and K. A. Tanaka, “Two plasmonic mode excitation using a double-step rectangle grating,” J. Opt. Soc. Am. B 32, 1804–1808 (2015).
[Crossref]

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

N.-F. Chiu, C.-D. Yang, Y.-L. Kao, and C.-J. Cheng, “Design of plasmonic circular grating with broadband absorption enhancements,” Proc. SPIE 9502, 950213 (2015).
[Crossref]

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15, 107–113 (2015).
[Crossref]

2014 (9)

C. Lumdee, B. Yun, and P. G. Kik, “Gap-plasmon enhanced gold nanoparticle photoluminescence,” ACS Photon. 1, 1224–1230 (2014).
[Crossref]

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

C.-H. Lin, C. Hsieh, C.-G. Tu, Y. Kuo, H.-S. Chen, P.-Y. Shih, C.-H. Liao, Y.-W. Kiang, C. C. Yang, C.-H. Lai, G.-R. He, J.-H. Yeh, and T.-C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842–A856 (2014).
[Crossref]

X. H. Xiong, L. M. Zhan, and X. Ke, “Effects of grating slant angle on surface plasmon resonance and its applications for sensors,” Appl. Mech. Mater. 536–537, 342–345 (2014).
[Crossref]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref]

2013 (11)

A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
[Crossref]

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

D. Natelson, Y. Li, and J. B. Herzog, “Nanogap structures: combining enhanced Raman spectroscopy and electronic transport,” Phys. Chem. Chem. Phys. 15, 5262–5275 (2013).
[Crossref]

T. Kawawaki, Y. Takahashi, and T. Tatsuma, “Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling,” J. Phys. Chem. C 117, 5901–5907 (2013).
[Crossref]

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Y. Jiao, L. H. Liu, and P.-F. Hsu, “Widening absorption band of grating structure with complex dual-groove grating,” J. Heat Transfer 135, 032701 (2013).
[Crossref]

2012 (5)

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

2011 (8)

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

A. W. Clark and J. M. Cooper, “Nanogap ring antennae as plasmonically coupled SERRS substrates,” Small 7, 119–125 (2011).
[Crossref]

N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19, 11256–11263 (2011).
[Crossref]

A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83, 193404 (2011).
[Crossref]

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express 19, 787–813 (2011).
[Crossref]

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
[Crossref]

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2011).
[Crossref]

2010 (8)

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure,” Opt. Commun. 283, 1763–1767 (2010).
[Crossref]

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
[Crossref]

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20, 945–950 (2010).
[Crossref]

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors 10, 9630–9646 (2010).
[Crossref]

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
[Crossref]

T. Vo-Dinh, H.-N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophoton. 3, 89–102 (2010).
[Crossref]

2009 (1)

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[Crossref]

2008 (11)

R. Gordon, D. Sinton, A. G. Brolo, and K. L. Kavanagh, “Plasmonic sensors based on nano-holes: technology and integration,” Proc. SPIE 6959, 695913 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
[Crossref]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16, 9781–9790 (2008).
[Crossref]

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[Crossref]

H. J. Lee, A. W. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst 133, 596–601 (2008).
[Crossref]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16, 3114–3119 (2008).
[Crossref]

2007 (7)

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[Crossref]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007).
[Crossref]

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B 40, S259–S272 (2007).
[Crossref]

K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46, 5703–5708 (2007).
[Crossref]

J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO_2 interface,” J. Opt. Soc. Am. B 24, 2268–2272 (2007).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

2006 (2)

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006).
[Crossref]

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
[Crossref]

2005 (3)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302–2304 (2005).
[Crossref]

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[Crossref]

2004 (2)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

2003 (3)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Abb, M.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Abdulhalim, I.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

Agoston, R.

A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
[Crossref]

Ahn, J. S.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Ahn, K. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Alaee, R.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

Alameh, K.

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure,” Opt. Commun. 283, 1763–1767 (2010).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Arbel, D.

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Askarov, D.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2011).
[Crossref]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Ayoko, G. A.

A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
[Crossref]

Bachelot, R.

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

Baik, J. M.

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[Crossref]

Banaee, M. G.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
[Crossref]

Bantz, K. C.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
[Crossref]

Barber, G. D.

A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
[Crossref]

Bardou, N.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Barnard, E. S.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

Bartlett, P. N.

Bauman, S. J.

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
[Crossref]

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

S. J. Bauman, “Fabrication of sub-10  nm metallic structures via nanomasking technique for plasmonic enhancement applications,” MS thesis (University of Arkansas, 2015).

Baumberg, J. J.

Beermann, J.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

Blaize, S.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

Bozhevolnyi, S. I.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Brandl, D. W.

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

R. Gordon, D. Sinton, A. G. Brolo, and K. L. Kavanagh, “Plasmonic sensors based on nano-holes: technology and integration,” Proc. SPIE 6959, 695913 (2008).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Bulu, I.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

Byun, K. M.

Canva, M.

Catrysse, P. B.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
[Crossref]

Chen, H.-S.

Chen, J.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Chen, L.

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

Chen, Q.-D.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

Chen, T.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref]

Chen, X.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15, 107–113 (2015).
[Crossref]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Cheng, C.-J.

N.-F. Chiu, C.-D. Yang, Y.-L. Kao, and C.-J. Cheng, “Design of plasmonic circular grating with broadband absorption enhancements,” Proc. SPIE 9502, 950213 (2015).
[Crossref]

Chiu, N.-F.

N.-F. Chiu, C.-D. Yang, Y.-L. Kao, and C.-J. Cheng, “Design of plasmonic circular grating with broadband absorption enhancements,” Proc. SPIE 9502, 950213 (2015).
[Crossref]

Choy, J. T.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

Choy, T. C.

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 2015).

Choy, W. C. H.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, Y.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
[Crossref]

Ciracì, C.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15, 107–113 (2015).
[Crossref]

Clark, A. W.

A. W. Clark and J. M. Cooper, “Nanogap ring antennae as plasmonically coupled SERRS substrates,” Small 7, 119–125 (2011).
[Crossref]

Collin, S.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Conway, J.

Cooper, J. M.

A. W. Clark and J. M. Cooper, “Nanogap ring antennae as plasmonically coupled SERRS substrates,” Small 7, 119–125 (2011).
[Crossref]

Corn, R. M.

H. J. Lee, A. W. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst 133, 596–601 (2008).
[Crossref]

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[Crossref]

Couteau, C.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

Crozier, K. B.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
[Crossref]

Cuevas, J. C.

A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83, 193404 (2011).
[Crossref]

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref]

Cui, X.

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20, 945–950 (2010).
[Crossref]

Cushman, B.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref]

Daghestani, H. N.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors 10, 9630–9646 (2010).
[Crossref]

Das, B.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Day, B. W.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors 10, 9630–9646 (2010).
[Crossref]

Day, J. K.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

de Groot, C. H.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

de la Cruz, S.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

Debu, D.

C. Saylor, E. Novak, D. Debu, and J. B. Herzog, “Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays,” J. Nanophoton. 9, 093053 (2015).
[Crossref]

Debu, D. T.

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
[Crossref]

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Derkacs, D.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
[Crossref]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Dhawan, A.

Dostálek, J.

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[Crossref]

Du, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Dupuis, C.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Ebbesen, T. W.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

Evans, K. M.

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

Fan, S.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
[Crossref]

Fan, Z.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Faryad, M.

A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
[Crossref]

Feizpour, A.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref]

Feng, J.

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Filter, R.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

Gan, D.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Gao, B.-R.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

García-Martín, A.

A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83, 193404 (2011).
[Crossref]

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Garnett, E. C.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

Geng, W.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Gordon, R.

R. Gordon, D. Sinton, A. G. Brolo, and K. L. Kavanagh, “Plasmonic sensors based on nano-holes: technology and integration,” Proc. SPIE 6959, 695913 (2008).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Greenham, N. C.

Guillemoles, J.-F.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Guo, J.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).

Habara, H.

Halas, N. J.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Hall, A. S.

A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

Hao, Y.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

Hausmann, B. J. M.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

Haynes, C. L.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
[Crossref]

He, G.-R.

Herzog, J. B.

C. Saylor, E. Novak, D. Debu, and J. B. Herzog, “Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays,” J. Nanophoton. 9, 093053 (2015).
[Crossref]

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
[Crossref]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref]

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

D. Natelson, Y. Li, and J. B. Herzog, “Nanogap structures: combining enhanced Raman spectroscopy and electronic transport,” Phys. Chem. Chem. Phys. 15, 5262–5275 (2013).
[Crossref]

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

Hill, A. M.

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

Homola, J.

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[Crossref]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Hori, H.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16, 9781–9790 (2008).
[Crossref]

Hsieh, C.

Hsu, P.-F.

Y. Jiao, L. H. Liu, and P.-F. Hsu, “Widening absorption band of grating structure with complex dual-groove grating,” J. Heat Transfer 135, 032701 (2013).
[Crossref]

Hsu, T.-C.

Huang, F.

Huang, I.-C.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

Hüser, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref]

Im, H.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
[Crossref]

Izake, E. L.

A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
[Crossref]

Janitz, E.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

Jiang, K.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

Jiang, Y.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

Jiao, Y.

Y. Jiao, L. H. Liu, and P.-F. Hsu, “Widening absorption band of grating structure with complex dual-groove grating,” J. Heat Transfer 135, 032701 (2013).
[Crossref]

Jin, Y.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jung, Y. S.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B 40, S259–S272 (2007).
[Crossref]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

Kao, Y.-L.

N.-F. Chiu, C.-D. Yang, Y.-L. Kao, and C.-J. Cheng, “Design of plasmonic circular grating with broadband absorption enhancements,” Proc. SPIE 9502, 950213 (2015).
[Crossref]

Kavanagh, K. L.

R. Gordon, D. Sinton, A. G. Brolo, and K. L. Kavanagh, “Plasmonic sensors based on nano-holes: technology and integration,” Proc. SPIE 6959, 695913 (2008).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Kawata, S.

Kawawaki, T.

T. Kawawaki, Y. Takahashi, and T. Tatsuma, “Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling,” J. Phys. Chem. C 117, 5901–5907 (2013).
[Crossref]

Ke, X.

X. H. Xiong, L. M. Zhan, and X. Ke, “Effects of grating slant angle on surface plasmon resonance and its applications for sensors,” Appl. Mech. Mater. 536–537, 342–345 (2014).
[Crossref]

Kiang, Y.-W.

Kik, P. G.

C. Lumdee, B. Yun, and P. G. Kik, “Gap-plasmon enhanced gold nanoparticle photoluminescence,” ACS Photon. 1, 1224–1230 (2014).
[Crossref]

Kim, D.

Kim, D.-S.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Kim, H. K.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B 40, S259–S272 (2007).
[Crossref]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

Kim, S. J.

Kim, Y. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Kintaka, K.

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20, 945–950 (2010).
[Crossref]

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16, 9781–9790 (2008).
[Crossref]

Kiyosue, K.

Kley, E.-B.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

Klingsporn, J. M.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

Knight, M. W.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref]

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Kubo, A.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B 40, S259–S272 (2007).
[Crossref]

Kuo, Y.

Kurtulus, Ö.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

Kwong, J. H. W.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Lai, C.-H.

Lakhtakia, A.

A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
[Crossref]

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

Lal, N. N.

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Lederer, F.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

Lee, H. J.

H. J. Lee, A. W. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst 133, 596–601 (2008).
[Crossref]

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[Crossref]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

Lee, S. H.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

Lee, S. J.

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[Crossref]

Lee, Y. T.

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure,” Opt. Commun. 283, 1763–1767 (2010).
[Crossref]

Lehr, D.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

Lemaître, A.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Leung, S.-F.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Li, G.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

Li, K.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Li, S.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Li, X.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Li, Y.

D. Natelson, Y. Li, and J. B. Herzog, “Nanogap structures: combining enhanced Raman spectroscopy and electronic transport,” Phys. Chem. Chem. Phys. 15, 5262–5275 (2013).
[Crossref]

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

Liao, C.-H.

Lin, C.-H.

Lin, Q.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Lindquist, N. C.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
[Crossref]

Liu, F.

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

Liu, J. S. Q.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

Liu, L. H.

Y. Jiao, L. H. Liu, and P.-F. Hsu, “Widening absorption band of grating structure with complex dual-groove grating,” J. Heat Transfer 135, 032701 (2013).
[Crossref]

Liu, Z.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Loncar, M.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Lu, J.

Lu, Y.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

Lumdee, C.

C. Lumdee, B. Yun, and P. G. Kik, “Gap-plasmon enhanced gold nanoparticle photoluminescence,” ACS Photon. 1, 1224–1230 (2014).
[Crossref]

Luo, X.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Lysak, V. V.

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure,” Opt. Commun. 283, 1763–1767 (2010).
[Crossref]

Mahajan, S.

Mahajan, S. M.

T. K. Manna and S. M. Mahajan, “Nanotechnology in the development of photovoltaic cells,” in International Conference on Clean Electrical Power (ICCEP) (2007), pp. 379–386.

Mallouk, T. E.

A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
[Crossref]

Manna, T. K.

T. K. Manna and S. M. Mahajan, “Nanotechnology in the development of photovoltaic cells,” in International Conference on Clean Electrical Power (ICCEP) (2007), pp. 379–386.

Mao, L.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

Martín-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Massiot, I.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Matheu, P.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
[Crossref]

Méndez, E. R.

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

Meyer, A. F.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

Mishima, Y.

Moskovits, M.

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[Crossref]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2011).
[Crossref]

Muskens, O. L.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[Crossref]

Natelson, D.

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
[Crossref]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref]

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

D. Natelson, Y. Li, and J. B. Herzog, “Nanogap structures: combining enhanced Raman spectroscopy and electronic transport,” Phys. Chem. Chem. Phys. 15, 5262–5275 (2013).
[Crossref]

A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83, 193404 (2011).
[Crossref]

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Neumann, O.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

Nishii, J.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
[Crossref]

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20, 945–950 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16, 9781–9790 (2008).
[Crossref]

Nitzan, A.

M. Sukharev and A. Nitzan, “Plasmon transmission through excitonic subwavelength gaps,” arXiv:1601.06325 [cond-mat, physics:physics] (2016).

Nordlander, P.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Novak, E.

C. Saylor, E. Novak, D. Debu, and J. B. Herzog, “Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays,” J. Nanophoton. 9, 093053 (2015).
[Crossref]

Novak, E. C.

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
[Crossref]

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

Oh, S.-H.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15, 107–113 (2015).
[Crossref]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
[Crossref]

Okamoto, T.

Orenstein, M.

Oubre, C.

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Pala, R. A.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

Papasimakis, N.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Park, H.-R.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Park, N.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Pauly, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref]

Pedersen, K.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

Pelton, M.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Petek, H.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B 40, S259–S272 (2007).
[Crossref]

Petre, C.

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

Piao, X.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Pourmand, M.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Qavi, A. J.

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[Crossref]

Qin, G.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Rahbany, N.

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

Reinhard, B. M.

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref]

Ren, Y.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Rockstuhl, C.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Ruvuna, L. K.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

Salas-Montiel, R.

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

Saylor, C.

C. Saylor, E. Novak, D. Debu, and J. B. Herzog, “Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays,” J. Nanophoton. 9, 093053 (2015).
[Crossref]

Scaffidi, J.

T. Vo-Dinh, H.-N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophoton. 3, 89–102 (2010).
[Crossref]

Schaadt, D. M.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
[Crossref]

Sha, W. E. I.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Sharma, B.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

Shen, B.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Shen, J.-T.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
[Crossref]

Shen, W.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Shih, P.-Y.

Shin, H.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
[Crossref]

Sillence, M.

A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
[Crossref]

Sinha, J. K.

Sinton, D.

R. Gordon, D. Sinton, A. G. Brolo, and K. L. Kavanagh, “Plasmonic sensors based on nano-holes: technology and integration,” Proc. SPIE 6959, 695913 (2008).
[Crossref]

Sivanesan, A.

A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
[Crossref]

Smith, D. R.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15, 107–113 (2015).
[Crossref]

Soares, B. F.

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Søndergaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

Sonntag, M. D.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Steele, J. M.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Sukharev, M.

M. Sukharev and A. Nitzan, “Plasmon transmission through excitonic subwavelength gaps,” arXiv:1601.06325 [cond-mat, physics:physics] (2016).

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Sun, H.-B.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

Sun, Z.

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Syed, A.

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

Takahashi, Y.

T. Kawawaki, Y. Takahashi, and T. Tatsuma, “Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling,” J. Phys. Chem. C 117, 5901–5907 (2013).
[Crossref]

Tan, C. L.

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure,” Opt. Commun. 283, 1763–1767 (2010).
[Crossref]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[Crossref]

Tanaka, K. A.

Tatsu, Y.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16, 9781–9790 (2008).
[Crossref]

Tatsuma, T.

T. Kawawaki, Y. Takahashi, and T. Tatsuma, “Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling,” J. Phys. Chem. C 117, 5901–5907 (2013).
[Crossref]

Tawa, K.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
[Crossref]

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20, 945–950 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16, 9781–9790 (2008).
[Crossref]

Tu, C.-G.

Tu, Y.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).

Tünnermann, A.

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

Van Duyne, R. P.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vandamme, N.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
[Crossref]

Vo-Dinh, T.

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express 19, 787–813 (2011).
[Crossref]

T. Vo-Dinh, H.-N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophoton. 3, 89–102 (2010).
[Crossref]

Wang, B.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).

Wang, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Wang, D.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
[Crossref]

Wang, H.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

Wang, H.-N.

T. Vo-Dinh, H.-N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophoton. 3, 89–102 (2010).
[Crossref]

Wang, H.-Y.

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

Wang, J.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Wang, L.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).

Wang, P.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

Wang, X.

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

Wang, Y.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006).
[Crossref]

Wang, Z.

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

Ward, D. R.

A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83, 193404 (2011).
[Crossref]

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Wark, A. W.

H. J. Lee, A. W. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst 133, 596–601 (2008).
[Crossref]

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[Crossref]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Wittenberg, N. J.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

Wong, K.

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Xie, F.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Xiong, X. H.

X. H. Xiong, L. M. Zhan, and X. Ke, “Effects of grating slant angle on surface plasmon resonance and its applications for sensors,” Appl. Mech. Mater. 536–537, 342–345 (2014).
[Crossref]

Xu, T.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Yablonovitch, E.

Yang, C. C.

Yang, C.-D.

N.-F. Chiu, C.-D. Yang, Y.-L. Kao, and C.-J. Cheng, “Design of plasmonic circular grating with broadband absorption enhancements,” Proc. SPIE 9502, 950213 (2015).
[Crossref]

Yang, L.

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).

Yang, Y.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

Yeh, J.-H.

Yoon, S. J.

You, J.

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Yu, E. T.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
[Crossref]

Yu, J.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

Yu, R.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Yue, W.

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

Yun, B.

C. Lumdee, B. Yun, and P. G. Kik, “Gap-plasmon enhanced gold nanoparticle photoluminescence,” ACS Photon. 1, 1224–1230 (2014).
[Crossref]

Zeng, J.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

Zhan, L. M.

X. H. Xiong, L. M. Zhan, and X. Ke, “Effects of grating slant angle on surface plasmon resonance and its applications for sensors,” Appl. Mech. Mater. 536–537, 342–345 (2014).
[Crossref]

Zhang, L.

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

Zhang, X.

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Zhang, Y.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhao, Y.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

Zhen, Y.-R.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Zhu, W.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
[Crossref]

Zourob, M.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

Zrimsek, A. B.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

Zuo, L.

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

ACS Photon. (3)

R. Alaee, D. Lehr, R. Filter, F. Lederer, E.-B. Kley, C. Rockstuhl, and A. Tünnermann, “Scattering dark states in multiresonant concentric plasmonic nanorings,” ACS Photon. 2, 1085–1090 (2015).
[Crossref]

C. Lumdee, B. Yun, and P. G. Kik, “Gap-plasmon enhanced gold nanoparticle photoluminescence,” ACS Photon. 1, 1224–1230 (2014).
[Crossref]

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photon. 1, 878–884 (2014).
[Crossref]

Adv. Energy Mater. (1)

J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, “Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode,” Adv. Energy Mater. 2, 1203–1207 (2012).
[Crossref]

Adv. Funct. Mater. (1)

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: from a 1D grating to a 2D nanohole array,” Adv. Funct. Mater. 20, 945–950 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Anal. Chem. (1)

A. W. Wark, H. J. Lee, A. J. Qavi, and R. M. Corn, “Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing,” Anal. Chem. 79, 6697–6701 (2007).
[Crossref]

Analyst (1)

H. J. Lee, A. W. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst 133, 596–601 (2008).
[Crossref]

Appl. Mech. Mater. (1)

X. H. Xiong, L. M. Zhan, and X. Ke, “Effects of grating slant angle on surface plasmon resonance and its applications for sensors,” Appl. Mech. Mater. 536–537, 342–345 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[Crossref]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[Crossref]

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103, 161101 (2013).
[Crossref]

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88, 031101 (2006).
[Crossref]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[Crossref]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[Crossref]

Biosens. Bioelectron. (2)

J. Chen, G. Qin, J. Wang, J. Yu, B. Shen, S. Li, Y. Ren, L. Zuo, W. Shen, and B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms,” Biosens. Bioelectron. 44, 191–197 (2013).
[Crossref]

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref]

Chem. Soc. Rev. (1)

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43, 1230–1247 (2014).
[Crossref]

Electromagnetics (1)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[Crossref]

IEEE Trans. Nanotechnol. (1)

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of sub-lithography-limited structures via nanomasking technique for plasmonic enhancement applications,” IEEE Trans. Nanotechnol. 14, 790–793 (2015).
[Crossref]

J. Biophoton. (1)

T. Vo-Dinh, H.-N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophoton. 3, 89–102 (2010).
[Crossref]

J. Chem. Phys. (1)

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[Crossref]

J. Heat Transfer (1)

Y. Jiao, L. H. Liu, and P.-F. Hsu, “Widening absorption band of grating structure with complex dual-groove grating,” J. Heat Transfer 135, 032701 (2013).
[Crossref]

J. Micromech. Microeng. (1)

W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, “Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering,” J. Micromech. Microeng. 22, 125007 (2012).
[Crossref]

J. Nanobiotechnol. (1)

A. Sivanesan, E. L. Izake, R. Agoston, G. A. Ayoko, and M. Sillence, “Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids,” J. Nanobiotechnol. 13, 43 (2015).
[Crossref]

J. Nanophoton. (1)

C. Saylor, E. Novak, D. Debu, and J. B. Herzog, “Investigation of maximum optical enhancement in single gold nanowires and triple nanowire arrays,” J. Nanophoton. 9, 093053 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B 40, S259–S272 (2007).
[Crossref]

J. Phys. Chem. C (2)

Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115, 12636–12642 (2011).
[Crossref]

T. Kawawaki, Y. Takahashi, and T. Tatsuma, “Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling,” J. Phys. Chem. C 117, 5901–5907 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Chen, M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard, “Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains through simultaneous control of size and gap separation,” J. Phys. Chem. Lett. 4, 2147–2152 (2013).
[Crossref]

Nano Energy (1)

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1, 57–72 (2012).
[Crossref]

Nano Lett. (12)

J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, “Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions,” Nano Lett. 13, 1359–1364 (2013).
[Crossref]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

J. M. Baik, S. J. Lee, and M. Moskovits, “Polarized surface-enhanced raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires,” Nano Lett. 9, 672–676 (2009).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15, 107–113 (2015).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10, 2231–2236 (2010).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2011).
[Crossref]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Nanospectroscopy (1)

N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, and C. Couteau, “Integrated plasmonic double bowtie/ring grating structure for enhanced electric field confinement,” Nanospectroscopy 1, 61–66 (2015).

Nanotechnology (1)

K. Li, K. Jiang, L. Zhang, Y. Wang, L. Mao, J. Zeng, Y. Lu, and P. Wang, “Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film,” Nanotechnology 27, 165401 (2016).
[Crossref]

Nat Commun. (2)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat Commun. 3, 969 (2012).
[Crossref]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun. 4, 2361 (2013).

Nat. Commun. (3)

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 1–7 (2014).

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nat. Nanotechnol. (1)

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5, 732–736 (2010).
[Crossref]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Opt. Commun. (1)

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980  nm MSM photodetector with a plasmonic grating structure,” Opt. Commun. 283, 1763–1767 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Rev. (1)

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16, 216–221 (2010).
[Crossref]

Phys. Chem. Chem. Phys. (2)

D. Natelson, Y. Li, and J. B. Herzog, “Nanogap structures: combining enhanced Raman spectroscopy and electronic transport,” Phys. Chem. Chem. Phys. 15, 5262–5275 (2013).
[Crossref]

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).
[Crossref]

Phys. Rev. B (2)

A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B 83, 193404 (2011).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Plasmonics (1)

N. Rahbany, W. Geng, R. Salas-Montiel, S. de la Cruz, E. R. Méndez, S. Blaize, R. Bachelot, and C. Couteau, “A concentric plasmonic platform for the efficient excitation of surface plasmon polaritons,” Plasmonics 11, 175–182 (2015).
[Crossref]

Proc. SPIE (6)

J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Design of a double grating-coupled surface plasmon color filter,” Proc. SPIE 9744, 97440C (2016).

N.-F. Chiu, C.-D. Yang, Y.-L. Kao, and C.-J. Cheng, “Design of plasmonic circular grating with broadband absorption enhancements,” Proc. SPIE 9502, 950213 (2015).
[Crossref]

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
[Crossref]

S. J. Bauman, D. T. Debu, A. M. Hill, E. C. Novak, D. Natelson, and J. B. Herzog, “Optical nanogap matrices for plasmonic enhancement applications,” Proc. SPIE 9163, 91631A (2014).
[Crossref]

R. Gordon, D. Sinton, A. G. Brolo, and K. L. Kavanagh, “Plasmonic sensors based on nano-holes: technology and integration,” Proc. SPIE 6959, 695913 (2008).
[Crossref]

A. S. Hall, M. Faryad, G. D. Barber, A. Lakhtakia, and T. E. Mallouk, “Effect of grating period on the excitation of multiple surface-plasmon-polariton waves guided by the interface of a metal grating and a photonic crystal,” Proc. SPIE 8620, 862003 (2013).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref]

Sens. Actuators B (1)

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B 129, 303–310 (2008).
[Crossref]

Sensors (1)

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors 10, 9630–9646 (2010).
[Crossref]

Small (2)

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10  nm,” Small 7, 1761–1766 (2011).
[Crossref]

A. W. Clark and J. M. Cooper, “Nanogap ring antennae as plasmonically coupled SERRS substrates,” Small 7, 119–125 (2011).
[Crossref]

Other (4)

T. K. Manna and S. M. Mahajan, “Nanotechnology in the development of photovoltaic cells,” in International Conference on Clean Electrical Power (ICCEP) (2007), pp. 379–386.

M. Sukharev and A. Nitzan, “Plasmon transmission through excitonic subwavelength gaps,” arXiv:1601.06325 [cond-mat, physics:physics] (2016).

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 2015).

S. J. Bauman, “Fabrication of sub-10  nm metallic structures via nanomasking technique for plasmonic enhancement applications,” MS thesis (University of Arkansas, 2015).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (235 KB)      Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Sketch of the double-width plasmonic grating design with nanogap spacing. The nanostructure height, t, period, P, the short width, wS, the long width, wL, and the nanogap width, g, are labeled.

Fig. 2.
Fig. 2.

(a) Depiction of cross-sectional simulation space that contains a single period of the dual-width plasmonic Au grating. The PMLs as well as the structure and gap widths (wS, wL, and g, respectively) are labeled. The incident light direction is k, and E0 is the direction of polarization. Periodic boundary conditions were applied in both horizontal directions. (b) Optical enhancement distribution simulation results when wS=60  nm, wL=360  nm, and λ0=700  nm. The box over the gap is the region of interest and does not alter any material properties of the structure.

Fig. 3.
Fig. 3.

(a)–(c) Optical enhancement, Σ(E/E0)2, in the gap for double-width plasmonic grating geometries as a function of wS and wL for three incident wavelengths (λ0=600, 700, and 800 nm); wS and wL range from 10 to 250 nm in 10 nm steps. (d) w values at the peak wavelengths for each of the three resonant periods in the width range. (e) Enhancement as a function of gold width (wS=wL) with the range extended from 10 to 1000 nm for the same wavelengths and step size as in (a)–(c).

Fig. 4.
Fig. 4.

(a) Optical enhancement for combinations of wS and wL from 10 to 1000 nm with λ0=700  nm. The positively sloped diagonal corresponds to wS=wL. Negatively sloped, constant-period diagonal lines correspond to the patterns of local and absolute enhancement maxima. Width combinations A and i–iii are points of interest. (b) Depiction of the geometry showing P and x=wS+g. (c) Plot of optical enhancement versus gap position, x, along the black diagonal line, from A to iii in (a), where P1=430  nm. (d) Plot of period width versus resonance number, corresponding to the periods in (a).

Fig. 5.
Fig. 5.

Simulation results of a nonperiodic model consisting of an isolated 5 μm Au slab with 15 nm height. Resulting charge distribution of the slab showing the resonant plasmon wavelength (λp) from a normal incident plane wave with the wavelength (λ0) set at 700 nm. λp was found to be 363 nm. One edge of the structure is visible at the far left.

Fig. 6.
Fig. 6.

Electric field and surface charge distribution results for P1=430  nm and width combinations labeled in Fig. 4(a). In (i), (ii), and (iii), wS are 60, 130, and 210 nm, and wL are 360, 290, and 210 nm, respectively. (a) Electric field distributions resulting from the different plasmons shown by (b) the charge distributions. Also see Visualization 1.

Fig. 7.
Fig. 7.

Simulation results for three different geometries at three different gap widths for constant period, P=430  nm, and Au width, wS=60  nm. Gap values of g=5, 20, and 50 nm were used and correspond to (i), (ii), and (iii), respectively. (a) Shows the three simulated geometries with similar widths. (b) Enhancement spectra for each situation. Gray wS curves represent enhancement near an isolated small stripe, red wL curves represent an isolated larger stripe, and blue dual curves were taken by including both gold structures.

Fig. 8.
Fig. 8.

Electric field distribution results of each gap width and geometry at the corresponding peak wavelengths. (a), (b), and (c) Correspond to Fig. 7(b) i, ii, and iii, respectively.

Fig. 9.
Fig. 9.

(a) Cross-sectional simulation space, which contains air, SiO2, and various double nanowire widths. (b) Plot of the optical enhancement versus wire width along the diagonal line in (c). (c) Optical enhancement of the structure when wS and wL were swept from 10 to 800 nm. Dashed diagonal line represents wS=wL, the standard plasmonic grating geometry.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

wS=wL+(P2g).

Metrics