Abstract

We investigate a novel Smith–Purcell terahertz source. This device is composed of an electron gun, a cylindrical resonator, a metallic grating, and a collector. The characteristics of the Smith–Purcell terahertz source are discussed with the help of three-dimensional particle-in-cell simulation. In this device, coherent and high-power Smith–Purcell radiation (SPR) at the terahertz frequency range can be produced for the reasonable parameters of charge energy and grating. Our results indicate that coherent SPR at 506.529 GHz with a power around 1000 W can be obtained for a grating of period l=0.3  mm operating at the beam energy E=50  keV and beam current I=10  A.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams

Yaxin Zhang and Liang Dong
Opt. Express 20(20) 22627-22635 (2012)

High-harmonic terahertz Smith-Purcell free-electron-laser with two tandem cylindrical-gratings

Linbo Liang, Weihao Liu, Qika Jia, Lin Wang, and Yalin Lu
Opt. Express 25(3) 2960-2968 (2017)

Smith-Purcell radiation from periodic beams

D. Y. Sergeeva, A. P. Potylitsyn, A. A. Tishchenko, and M. N. Strikhanov
Opt. Express 25(21) 26310-26328 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Gallerano and S. G. Biedron, “Overview of terahertz radiation sources,” in Proceedings of the FEL Conference (2004), pp. 216–221.
  2. B. S. Williams and S. Kumar, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
    [Crossref]
  3. B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
    [Crossref]
  4. J. Urata, M. Goldstein, and M. F. Kimmitt, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
    [Crossref]
  5. Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam–driven enhanced terahertz coherent Smith–Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6, 262–267 (2016).
  6. P. Zhang, L. K. Ang, and A. Gover, “Enhancement of coherent Smith–Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity,” Phys. Rev. Special Top. 18, 1–2 (2015).
  7. J. Gardelle and J. T. Donohue, “Two and three dimension simulations of Smith–Purcell terahertz radiation using a particle-in-cell code,” Nucl. Instrum. Methods Phys. Res. 266, 3822–3827 (2008).
  8. W. Liu, Z. Yang, and Z. Liang, “Enhancement of terahertz Smith–Purcell radiation by two electron beams,” Nucl. Instrum. Methods Phys. Res. 580, 1552–1558 (2007).
  9. Y. X. Zhang and L. Dong, “Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron-beams,” Opt. Express 20, 22627–22635 (2012).
    [Crossref]
  10. Z. J. Shi, Z. Q. Yang, and Z. Liang, “Coherent terahertz Smith–Purcell radiation from beam bunching,” Nucl. Instrum. Methods Phys. Res. 578, 543–547 (2007).
  11. Z. J. Shi, X. P. Tang, and F. Lan, “Simulation of terahertz Smith–Purcell radiation from one-dimensional dielectric photonic crystal,” J. Infrared Millimeter Waves 33, 183–187 (2014).
  12. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
    [Crossref]
  13. C. S. Liu and V. K. Tripathi, “Stimulated coherent Smith–Purcell radiation from a metallic grating,” IEEE J. Quantum Electron. 35, 1386–1389 (1999).
    [Crossref]
  14. J. M. Wachtel, “Free-electron lasers using the Smith–Purcell effect,” J. Appl. Phys. 50, 49–56 (1979).
    [Crossref]
  15. X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell free electron laser based on the semi-elliptical resonator,” Chin. Phys. B 20, 215–221 (2011).
  16. X. Z. Meng, “Smith–Purcell free electron laser based on a semi-conical resonator,” Opt. Commun. 285, 975–979 (2012).
    [Crossref]
  17. X. Z. Meng, “Smith–Purcell free electron laser based on a multilayer metal–dielectric stack,” Optik 124, 3162–3164 (2013).
    [Crossref]
  18. X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell radiation in a grating-resonator composite structure,” J. Infrared Millimeter Waves 35, 21–24 (2016).
  19. H. Bei, D. D. Dai, and Z. M. Dai, “Simulation of Smith–Purcell radiation from compact terahertz source,” High Power Laser Part. Beams 20, 2067–2072 (2008).
  20. X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
    [Crossref]
  21. D. Li, K. Imasaki, and Z. Yang, “Three-dimensional simulation of super-radiant Smith–Purcell radiation,” Appl. Phys. Lett. 88, 201501 (2006).
    [Crossref]

2016 (3)

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam–driven enhanced terahertz coherent Smith–Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6, 262–267 (2016).

B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
[Crossref]

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell radiation in a grating-resonator composite structure,” J. Infrared Millimeter Waves 35, 21–24 (2016).

2015 (1)

P. Zhang, L. K. Ang, and A. Gover, “Enhancement of coherent Smith–Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity,” Phys. Rev. Special Top. 18, 1–2 (2015).

2014 (1)

Z. J. Shi, X. P. Tang, and F. Lan, “Simulation of terahertz Smith–Purcell radiation from one-dimensional dielectric photonic crystal,” J. Infrared Millimeter Waves 33, 183–187 (2014).

2013 (1)

X. Z. Meng, “Smith–Purcell free electron laser based on a multilayer metal–dielectric stack,” Optik 124, 3162–3164 (2013).
[Crossref]

2012 (2)

X. Z. Meng, “Smith–Purcell free electron laser based on a semi-conical resonator,” Opt. Commun. 285, 975–979 (2012).
[Crossref]

Y. X. Zhang and L. Dong, “Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron-beams,” Opt. Express 20, 22627–22635 (2012).
[Crossref]

2011 (1)

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell free electron laser based on the semi-elliptical resonator,” Chin. Phys. B 20, 215–221 (2011).

2009 (1)

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

2008 (2)

H. Bei, D. D. Dai, and Z. M. Dai, “Simulation of Smith–Purcell radiation from compact terahertz source,” High Power Laser Part. Beams 20, 2067–2072 (2008).

J. Gardelle and J. T. Donohue, “Two and three dimension simulations of Smith–Purcell terahertz radiation using a particle-in-cell code,” Nucl. Instrum. Methods Phys. Res. 266, 3822–3827 (2008).

2007 (3)

W. Liu, Z. Yang, and Z. Liang, “Enhancement of terahertz Smith–Purcell radiation by two electron beams,” Nucl. Instrum. Methods Phys. Res. 580, 1552–1558 (2007).

Z. J. Shi, Z. Q. Yang, and Z. Liang, “Coherent terahertz Smith–Purcell radiation from beam bunching,” Nucl. Instrum. Methods Phys. Res. 578, 543–547 (2007).

B. S. Williams and S. Kumar, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

2006 (1)

D. Li, K. Imasaki, and Z. Yang, “Three-dimensional simulation of super-radiant Smith–Purcell radiation,” Appl. Phys. Lett. 88, 201501 (2006).
[Crossref]

1999 (1)

C. S. Liu and V. K. Tripathi, “Stimulated coherent Smith–Purcell radiation from a metallic grating,” IEEE J. Quantum Electron. 35, 1386–1389 (1999).
[Crossref]

1998 (1)

J. Urata, M. Goldstein, and M. F. Kimmitt, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

1979 (1)

J. M. Wachtel, “Free-electron lasers using the Smith–Purcell effect,” J. Appl. Phys. 50, 49–56 (1979).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Ang, L. K.

P. Zhang, L. K. Ang, and A. Gover, “Enhancement of coherent Smith–Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity,” Phys. Rev. Special Top. 18, 1–2 (2015).

Asgekar, V.

B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
[Crossref]

Bei, H.

H. Bei, D. D. Dai, and Z. M. Dai, “Simulation of Smith–Purcell radiation from compact terahertz source,” High Power Laser Part. Beams 20, 2067–2072 (2008).

Biedron, S. G.

G. P. Gallerano and S. G. Biedron, “Overview of terahertz radiation sources,” in Proceedings of the FEL Conference (2004), pp. 216–221.

Dai, D. D.

H. Bei, D. D. Dai, and Z. M. Dai, “Simulation of Smith–Purcell radiation from compact terahertz source,” High Power Laser Part. Beams 20, 2067–2072 (2008).

Dai, Z. M.

H. Bei, D. D. Dai, and Z. M. Dai, “Simulation of Smith–Purcell radiation from compact terahertz source,” High Power Laser Part. Beams 20, 2067–2072 (2008).

Dong, L.

Donohue, J. T.

J. Gardelle and J. T. Donohue, “Two and three dimension simulations of Smith–Purcell terahertz radiation using a particle-in-cell code,” Nucl. Instrum. Methods Phys. Res. 266, 3822–3827 (2008).

Gallerano, G. P.

G. P. Gallerano and S. G. Biedron, “Overview of terahertz radiation sources,” in Proceedings of the FEL Conference (2004), pp. 216–221.

Gao, X.

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

Gardelle, J.

J. Gardelle and J. T. Donohue, “Two and three dimension simulations of Smith–Purcell terahertz radiation using a particle-in-cell code,” Nucl. Instrum. Methods Phys. Res. 266, 3822–3827 (2008).

Geloni, G.

B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
[Crossref]

Goldstein, M.

J. Urata, M. Goldstein, and M. F. Kimmitt, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Gover, A.

P. Zhang, L. K. Ang, and A. Gover, “Enhancement of coherent Smith–Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity,” Phys. Rev. Special Top. 18, 1–2 (2015).

Green, B.

B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
[Crossref]

Imasaki, K.

D. Li, K. Imasaki, and Z. Yang, “Three-dimensional simulation of super-radiant Smith–Purcell radiation,” Appl. Phys. Lett. 88, 201501 (2006).
[Crossref]

Kimmitt, M. F.

J. Urata, M. Goldstein, and M. F. Kimmitt, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Kovalev, S.

B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
[Crossref]

Kumar, S.

B. S. Williams and S. Kumar, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

Lan, F.

Z. J. Shi, X. P. Tang, and F. Lan, “Simulation of terahertz Smith–Purcell radiation from one-dimensional dielectric photonic crystal,” J. Infrared Millimeter Waves 33, 183–187 (2014).

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

Lehnert, U.

B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
[Crossref]

Li, D.

D. Li, K. Imasaki, and Z. Yang, “Three-dimensional simulation of super-radiant Smith–Purcell radiation,” Appl. Phys. Lett. 88, 201501 (2006).
[Crossref]

Li, D. Z.

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

Liang, Z.

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

Z. J. Shi, Z. Q. Yang, and Z. Liang, “Coherent terahertz Smith–Purcell radiation from beam bunching,” Nucl. Instrum. Methods Phys. Res. 578, 543–547 (2007).

W. Liu, Z. Yang, and Z. Liang, “Enhancement of terahertz Smith–Purcell radiation by two electron beams,” Nucl. Instrum. Methods Phys. Res. 580, 1552–1558 (2007).

Liu, C. S.

C. S. Liu and V. K. Tripathi, “Stimulated coherent Smith–Purcell radiation from a metallic grating,” IEEE J. Quantum Electron. 35, 1386–1389 (1999).
[Crossref]

Liu, S.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam–driven enhanced terahertz coherent Smith–Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6, 262–267 (2016).

Liu, W.

W. Liu, Z. Yang, and Z. Liang, “Enhancement of terahertz Smith–Purcell radiation by two electron beams,” Nucl. Instrum. Methods Phys. Res. 580, 1552–1558 (2007).

Meng, X. Z.

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell radiation in a grating-resonator composite structure,” J. Infrared Millimeter Waves 35, 21–24 (2016).

X. Z. Meng, “Smith–Purcell free electron laser based on a multilayer metal–dielectric stack,” Optik 124, 3162–3164 (2013).
[Crossref]

X. Z. Meng, “Smith–Purcell free electron laser based on a semi-conical resonator,” Opt. Commun. 285, 975–979 (2012).
[Crossref]

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell free electron laser based on the semi-elliptical resonator,” Chin. Phys. B 20, 215–221 (2011).

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Qi, L. M.

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

Ren, Z. M.

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell radiation in a grating-resonator composite structure,” J. Infrared Millimeter Waves 35, 21–24 (2016).

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell free electron laser based on the semi-elliptical resonator,” Chin. Phys. B 20, 215–221 (2011).

Shi, Z. J.

Z. J. Shi, X. P. Tang, and F. Lan, “Simulation of terahertz Smith–Purcell radiation from one-dimensional dielectric photonic crystal,” J. Infrared Millimeter Waves 33, 183–187 (2014).

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

Z. J. Shi, Z. Q. Yang, and Z. Liang, “Coherent terahertz Smith–Purcell radiation from beam bunching,” Nucl. Instrum. Methods Phys. Res. 578, 543–547 (2007).

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Tang, X. P.

Z. J. Shi, X. P. Tang, and F. Lan, “Simulation of terahertz Smith–Purcell radiation from one-dimensional dielectric photonic crystal,” J. Infrared Millimeter Waves 33, 183–187 (2014).

Tripathi, V. K.

C. S. Liu and V. K. Tripathi, “Stimulated coherent Smith–Purcell radiation from a metallic grating,” IEEE J. Quantum Electron. 35, 1386–1389 (1999).
[Crossref]

Urata, J.

J. Urata, M. Goldstein, and M. F. Kimmitt, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Wachtel, J. M.

J. M. Wachtel, “Free-electron lasers using the Smith–Purcell effect,” J. Appl. Phys. 50, 49–56 (1979).
[Crossref]

Wang, M. H.

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell radiation in a grating-resonator composite structure,” J. Infrared Millimeter Waves 35, 21–24 (2016).

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell free electron laser based on the semi-elliptical resonator,” Chin. Phys. B 20, 215–221 (2011).

Williams, B. S.

B. S. Williams and S. Kumar, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

Yang, Z.

W. Liu, Z. Yang, and Z. Liang, “Enhancement of terahertz Smith–Purcell radiation by two electron beams,” Nucl. Instrum. Methods Phys. Res. 580, 1552–1558 (2007).

D. Li, K. Imasaki, and Z. Yang, “Three-dimensional simulation of super-radiant Smith–Purcell radiation,” Appl. Phys. Lett. 88, 201501 (2006).
[Crossref]

Yang, Z. Q.

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

Z. J. Shi, Z. Q. Yang, and Z. Liang, “Coherent terahertz Smith–Purcell radiation from beam bunching,” Nucl. Instrum. Methods Phys. Res. 578, 543–547 (2007).

Zhang, P.

P. Zhang, L. K. Ang, and A. Gover, “Enhancement of coherent Smith–Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity,” Phys. Rev. Special Top. 18, 1–2 (2015).

Zhang, Y.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam–driven enhanced terahertz coherent Smith–Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6, 262–267 (2016).

Zhang, Y. X.

Zhou, Y.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam–driven enhanced terahertz coherent Smith–Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6, 262–267 (2016).

Appl. Phys. Lett. (1)

D. Li, K. Imasaki, and Z. Yang, “Three-dimensional simulation of super-radiant Smith–Purcell radiation,” Appl. Phys. Lett. 88, 201501 (2006).
[Crossref]

Chin. Phys. B (2)

X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li, and Z. Liang, “Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures,” Chin. Phys. B 18, 2452–2458 (2009).
[Crossref]

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell free electron laser based on the semi-elliptical resonator,” Chin. Phys. B 20, 215–221 (2011).

High Power Laser Part. Beams (1)

H. Bei, D. D. Dai, and Z. M. Dai, “Simulation of Smith–Purcell radiation from compact terahertz source,” High Power Laser Part. Beams 20, 2067–2072 (2008).

IEEE J. Quantum Electron. (1)

C. S. Liu and V. K. Tripathi, “Stimulated coherent Smith–Purcell radiation from a metallic grating,” IEEE J. Quantum Electron. 35, 1386–1389 (1999).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam–driven enhanced terahertz coherent Smith–Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. Terahertz Sci. Technol. 6, 262–267 (2016).

J. Appl. Phys. (1)

J. M. Wachtel, “Free-electron lasers using the Smith–Purcell effect,” J. Appl. Phys. 50, 49–56 (1979).
[Crossref]

J. Infrared Millimeter Waves (2)

Z. J. Shi, X. P. Tang, and F. Lan, “Simulation of terahertz Smith–Purcell radiation from one-dimensional dielectric photonic crystal,” J. Infrared Millimeter Waves 33, 183–187 (2014).

X. Z. Meng, M. H. Wang, and Z. M. Ren, “Smith–Purcell radiation in a grating-resonator composite structure,” J. Infrared Millimeter Waves 35, 21–24 (2016).

Nat. Photonics (1)

B. S. Williams and S. Kumar, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (3)

J. Gardelle and J. T. Donohue, “Two and three dimension simulations of Smith–Purcell terahertz radiation using a particle-in-cell code,” Nucl. Instrum. Methods Phys. Res. 266, 3822–3827 (2008).

W. Liu, Z. Yang, and Z. Liang, “Enhancement of terahertz Smith–Purcell radiation by two electron beams,” Nucl. Instrum. Methods Phys. Res. 580, 1552–1558 (2007).

Z. J. Shi, Z. Q. Yang, and Z. Liang, “Coherent terahertz Smith–Purcell radiation from beam bunching,” Nucl. Instrum. Methods Phys. Res. 578, 543–547 (2007).

Opt. Commun. (1)

X. Z. Meng, “Smith–Purcell free electron laser based on a semi-conical resonator,” Opt. Commun. 285, 975–979 (2012).
[Crossref]

Opt. Express (1)

Optik (1)

X. Z. Meng, “Smith–Purcell free electron laser based on a multilayer metal–dielectric stack,” Optik 124, 3162–3164 (2013).
[Crossref]

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Phys. Rev. Lett. (1)

J. Urata, M. Goldstein, and M. F. Kimmitt, “Superradiant Smith–Purcell emission,” Phys. Rev. Lett. 80, 516–519 (1998).
[Crossref]

Phys. Rev. Special Top. (1)

P. Zhang, L. K. Ang, and A. Gover, “Enhancement of coherent Smith–Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity,” Phys. Rev. Special Top. 18, 1–2 (2015).

Sci. Rep. (1)

B. Green, S. Kovalev, V. Asgekar, G. Geloni, and U. Lehnert, “High-field high-repetition-rate sources for the coherent THz control of matter,” Sci. Rep. 6, 22256 (2016).
[Crossref]

Other (1)

G. P. Gallerano and S. G. Biedron, “Overview of terahertz radiation sources,” in Proceedings of the FEL Conference (2004), pp. 216–221.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the SP THz source.
Fig. 2.
Fig. 2. Phase-space distribution of the SP THz source. (a) Density of electrons at the yz plane at 20.799 ns; bunching is evident. (b) Kinetic energy of electrons in bunching state.
Fig. 3.
Fig. 3. Profile distribution of field energy at the zy plane of the SP THz source.
Fig. 4.
Fig. 4. Profile distribution of field energy at the xz plane of the SP THz source.
Fig. 5.
Fig. 5. Profile distribution of field energy at the yx plane of the SP THz source.
Fig. 6.
Fig. 6. Evolution curve of field power at the output port of the SP THz source. (a) Field power S.DA. (b) Corresponding FFT.

Tables (1)

Tables Icon

Table 1. Parameters of the Simulations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ=Ln(1βcosθ),
cot(ω¯H¯)ω¯H¯n=(sinθnθn)2W¯cothγnb¯γnH¯=0,

Metrics