Abstract

We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge2Sb2Te5 (GST). The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer (silica) and a high-index GST planar cavity. Three absorption peaks with the maximal absorbance up to 99.94% are achieved, owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity. The intensities and positions of the absorption peaks show strong dependence on structural parameters. A heat transfer model is used to investigate the temporal variation of temperature within the GST region. The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×108  W/m2, due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber. The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Rapid phase transition of a phase-change metamaterial perfect absorber

Tun Cao, Chenwei Wei, Robert E. Simpson, Lei Zhang, and Martin J. Cryan
Opt. Mater. Express 3(8) 1101-1110 (2013)

Tunable near-infrared plasmonic perfect absorber based on phase-change materials

Yiguo Chen, Xiong Li, Xiangang Luo, Stefan A. Maier, and Minghui Hong
Photon. Res. 3(3) 54-57 (2015)

Tunable broadband, wide-angle, and polarization-dependent perfect infrared absorber based on planar structure containing phase-change material

Xiaohua Wang, Wanying Ding, Haixia Zhu, Chenglin Liu, and Youwen Liu
Appl. Opt. 57(30) 8915-8920 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  2. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
    [Crossref]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  4. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
    [Crossref]
  5. X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23, 29842–29847 (2015).
    [Crossref]
  6. Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23, 17607–17612 (2015).
    [Crossref]
  7. K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
    [Crossref]
  8. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  9. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41–48 (2007).
    [Crossref]
  10. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
    [Crossref]
  11. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
    [Crossref]
  12. E. Plum, V. Fedotov, P. Kuo, D. Tsai, and N. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
    [Crossref]
  13. T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
    [Crossref]
  14. X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
    [Crossref]
  15. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
    [Crossref]
  16. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011).
    [Crossref]
  17. J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21, 9691–9702 (2013).
    [Crossref]
  18. S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23, 3523–3533 (2015).
    [Crossref]
  19. Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
    [Crossref]
  20. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am B 27, 498–504 (2010).
    [Crossref]
  21. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref]
  22. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476–3478 (2011).
    [Crossref]
  23. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref]
  24. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.
  25. H.-M. Lee and J.-C. Wu, “Temperature controlled perfect absorber based on metal-superconductor-metal square array,” IEEE Trans. Magn. 48, 4243–4246 (2012).
    [Crossref]
  26. D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
    [Crossref]
  27. A. Redaelli, A. Pirovano, A. Benvenuti, and A. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys. 103, 111101 (2008).
    [Crossref]
  28. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
    [Crossref]
  29. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
    [Crossref]
  30. K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express 19, 1260–1270 (2011).
    [Crossref]
  31. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
    [Crossref]
  32. J. Van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
    [Crossref]
  33. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
    [Crossref]
  34. T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B 30, 1580–1585 (2013).
    [Crossref]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  36. B.-S. Lee and S. G. Bishop, “Optical and electrical properties of phase change materials,” in Phase Change Materials (Springer, 2009), pp. 175–198.
  37. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref]
  38. Y. Chen, T. Kao, B. Ng, X. Li, X. Luo, B. Luk’yanchuk, S. Maier, and M. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
    [Crossref]
  39. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6, 2550–2557 (2012).
    [Crossref]
  40. B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
    [Crossref]
  41. W. Zhou, K. Li, C. Song, P. Hao, M. Chi, M. Yu, and Y. Wu, “Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region,” Opt. Express 23, A413–A418 (2015).
    [Crossref]
  42. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
    [Crossref]
  43. M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
    [Crossref]

2016 (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

2015 (5)

2014 (4)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

2013 (7)

2012 (4)

H.-M. Lee and J.-C. Wu, “Temperature controlled perfect absorber based on metal-superconductor-metal square array,” IEEE Trans. Magn. 48, 4243–4246 (2012).
[Crossref]

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6, 2550–2557 (2012).
[Crossref]

2011 (5)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express 19, 1260–1270 (2011).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011).
[Crossref]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476–3478 (2011).
[Crossref]

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

2010 (3)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am B 27, 498–504 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

2009 (2)

2008 (3)

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

A. Redaelli, A. Pirovano, A. Benvenuti, and A. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys. 103, 111101 (2008).
[Crossref]

2007 (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41–48 (2007).
[Crossref]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

2006 (1)

B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

2001 (1)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

1999 (1)

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[Crossref]

An, B.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Averitt, R.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Baba, T.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Benvenuti, A.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys. 103, 111101 (2008).
[Crossref]

Bhaskaran, M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Bhattarai, K.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Bingham, C.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Bishop, S. G.

B.-S. Lee and S. G. Bishop, “Optical and electrical properties of phase change materials,” in Phase Change Materials (Springer, 2009), pp. 175–198.

Cao, T.

Cao, X.

Chen, G.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[Crossref]

Chen, L. Y.

Chen, Q.

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6, 2550–2557 (2012).
[Crossref]

Chen, Y.

Cheng, Y.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Chi, M.

Choi, E. H.

Chong, T.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Cryan, M. J.

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Cumming, D. R.

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Elliott, S.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Fan, K.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Fedotov, V.

Fons, P.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

Fukaya, T.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Fumeaux, C.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.

Gao, J.

Giessen, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

Gong, R.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Grant, J.

Gui, T.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

Hao, P.

Hase, M.

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am B 27, 498–504 (2010).
[Crossref]

He, X.-J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Hong, M.

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.

Hui, P.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jang, W. H.

Jeon, J.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.

Jiang, S.

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am B 27, 498–504 (2010).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

Kao, T.

Khalid, A.

Kim, J. O.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Kim, K. W.

Klemm, M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Ku, Z.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Kuo, P.

Kuwahara, M.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Lacaita, A.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys. 103, 111101 (2008).
[Crossref]

Landy, N.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lee, B.

B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

Lee, B.-S.

B.-S. Lee and S. G. Bishop, “Optical and electrical properties of phase change materials,” in Phase Change Materials (Springer, 2009), pp. 175–198.

Lee, H.-M.

H.-M. Lee and J.-C. Wu, “Temperature controlled perfect absorber based on metal-superconductor-metal square array,” IEEE Trans. Magn. 48, 4243–4246 (2012).
[Crossref]

Lee, S. J.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Lee, T.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Lee, Y.

Li, K.

Li, S.

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Li, X.

Li, Y.

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Loke, D.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Lu, X.

Luk’yanchuk, B.

Luo, X.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Ma, Y.

Maier, S.

Makino, K.

Mitchell, A.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Mock, J.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Ng, B.

Nie, Y.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Padilla, W.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pan, S.

Park, J. W.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Pilon, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Pirovano, A.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys. 103, 111101 (2008).
[Crossref]

Plum, E.

Polman, A.

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6, 2550–2557 (2012).
[Crossref]

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[Crossref]

Redaelli, A.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys. 103, 111101 (2008).
[Crossref]

Rhee, J. Y.

Saha, S.

Saha, S. C.

Sajuyigbe, S.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

Shah, C. M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41–48 (2007).
[Crossref]

Shi, L.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Shrekenhamer, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Silva, S.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Simpson, R. E.

Smith, D.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Song, C.

Sriram, S.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Strikwerda, A.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Suzuki, O.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Taketoshi, N.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Tao, H.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Tominaga, J.

K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express 19, 1260–1270 (2011).
[Crossref]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Tsai, D.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Urbas, A.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Van de Groep, J.

Van Tuong, P.

Wan, R.

Wang, J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Wang, W.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Wang, Y.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Wei, C.

Wei, C.-W.

T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref]

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Withayachumnankul, W.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

Wu, J.-C.

H.-M. Lee and J.-C. Wu, “Temperature controlled perfect absorber based on metal-superconductor-metal square array,” IEEE Trans. Magn. 48, 4243–4246 (2012).
[Crossref]

Wu, Q.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Wu, Y.

Wuttig, M.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Yagi, T.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Yamakawa, Y.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6, 2550–2557 (2012).
[Crossref]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Ye, Y. Q.

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am B 27, 498–504 (2010).
[Crossref]

Yeo, Y.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Yu, M.

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.

Zhang, C.

Zhang, L.

Zhang, T.

Zhang, X.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Zhang, Z.

Zhao, R.

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Zheludev, N.

Zheng, Y.

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Zhou, J.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Zhou, W.

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Zou, L.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

ACS Nano (1)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6, 2550–2557 (2012).
[Crossref]

Adv. Opt. Mater. (1)

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism,” Adv. Opt. Mater. 3, 1779–1786 (2015).
[Crossref]

Appl. Phys. Lett. (1)

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999).
[Crossref]

IEEE Photon. J. (1)

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–7 (2014).
[Crossref]

IEEE Trans. Magn. (1)

H.-M. Lee and J.-C. Wu, “Temperature controlled perfect absorber based on metal-superconductor-metal square array,” IEEE Trans. Magn. 48, 4243–4246 (2012).
[Crossref]

J. Appl. Phys. (3)

A. Redaelli, A. Pirovano, A. Benvenuti, and A. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys. 103, 111101 (2008).
[Crossref]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

B. Lee and Z. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
[Crossref]

J. Opt. (1)

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[Crossref]

J. Opt. Soc. Am B (1)

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am B 27, 498–504 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Laser Photon. Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photon. Rev. 8, 495–520 (2014).
[Crossref]

Microelectron. Eng. (1)

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng. 84, 1792–1796 (2007).
[Crossref]

Nano Lett. (2)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Nat. Photonics (1)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41–48 (2007).
[Crossref]

Opt. Express (9)

X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23, 29842–29847 (2015).
[Crossref]

Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23, 17607–17612 (2015).
[Crossref]

E. Plum, V. Fedotov, P. Kuo, D. Tsai, and N. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17, 8548–8551 (2009).
[Crossref]

J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21, 9691–9702 (2013).
[Crossref]

S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23, 3523–3533 (2015).
[Crossref]

J. Van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
[Crossref]

K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express 19, 1260–1270 (2011).
[Crossref]

Y. Chen, T. Kao, B. Ng, X. Li, X. Luo, B. Luk’yanchuk, S. Maier, and M. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
[Crossref]

W. Zhou, K. Li, C. Song, P. Hao, M. Chi, M. Yu, and Y. Wu, “Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region,” Opt. Express 23, A413–A418 (2015).
[Crossref]

Opt. Laser Technol. (1)

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Prog. Electromagn. Res. (1)

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Sci. Rep. (1)

T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref]

Science (2)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and S. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref]

Other (3)

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” in CLEO: QELS_Fundamental Science (2013), paper QTu2A. 4.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

B.-S. Lee and S. G. Bishop, “Optical and electrical properties of phase change materials,” in Phase Change Materials (Springer, 2009), pp. 175–198.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) 3D schematic diagram of the proposed MMPA and the incident light polarization configuration. The thicknesses of GST square resonators, silica spacer, and GST planar cavity are h = 60    nm , t = 30    nm , and T = 180    nm , respectively. The lattice period in both x and y directions is p = 300    nm , and the edge of the square resonator is w = 160    nm . (b) Top view of the proposed MMPA showing the structural parameters. (c) 3D schematic diagram of the planar control device as a comparison, where the thicknesses T of GST is tunable to guarantee its volume equally to that of the MMPA. (d) Real n (solid line, black) and imaginary k (sample line, red) parts of the refractive index for the amorphous phase of GST.
Fig. 2.
Fig. 2. 3D FDTD simulation of spectra of (a) reflectance and (b) absorbance for the proposed MMPA, the device with only GST planar cavity, the device with only GST square resonators, and the planar control device with the amorphous GST under the illumination of normal incidence light, respectively.
Fig. 3.
Fig. 3. (a–c) Normalized electric field distributions and the (d–f) heat power volume density Q d of the absorption peaks at λ 1 λ 3 for the proposed MMPA with amorphous phase of GST at normal incidence, respectively. The Q d is in unit of W / m 3 .
Fig. 4.
Fig. 4. Contour plot of the absorption spectrum dependence on the (a) lattice period p , the (b) square dimension w , and the (c) thicknesses T of GST planar cavity, respectively. Herein, the other structural parameters are the same as those of Fig. 1(a). The absorption evolution versus the thicknesses of GST planar cavity for the control device with only GST planar cavity also is depicted in panel (d) as a comparison.
Fig. 5.
Fig. 5. (a) 3D-FEM simulation of heat power shining on the MMPA and the planar control device with amorphous GST located at the beam center, respectively. (b) Temperatures of GST square array in the MMPA and the GST cavity in the MMPA and the GST layer in the planar control device during one pulse. The cross section view of one unit cell of (c) MMPA and the (d) planar control device, where the color image indicates the temperature distribution, and the arrows indicate the heat flux at 0.56 ns.
Fig. 6.
Fig. 6. (a) Real (solid line, black) and imaginary (symbol line, red) parts of the refractive index for crystalline GST. (b) 3D FDTD simulation of spectra of reflectance and absorbance for the proposed MMPA with crystalline GST at normal incidence. The absorption response of the proposed MMPA with amorphous GST also is given for comparison. (c)–(d) Normalized electric field distributions at the absorption peaks for the proposed MMPA with crystalline GST at normal incidence, respectively.

Tables (1)

Tables Icon

Table 1. Material Thermal Properties Used in the Heat Transfer Model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q d = 1 2 ϵ 0 ω Im ( ϵ r ) | E | 2 ,
2 k eff T + ϕ t + ϕ b = 2 m π .
F l ( r ) = 2 P 0 π w 0 2 f r exp ( 2 r 2 w 0 2 ) ,
E th ( r ) = R a p 2 F l ( r ) ,
Q s ( r , t ) = E th ( r ) Δ V π τ exp ( ( t t 0 ) 2 τ 2 ) ,

Metrics