Abstract

We propose dynamic terahertz (THz) emission microscopy (DTEM) to visualize temporal–spatial dynamics of photoexcited carriers in electronic materials. DTEM utilizes THz pulses emitted from a sample by probe pulses irradiated after pump pulse irradiation to perform time-resolved two-dimensional mapping of the THz pulse emission, reflecting various carrier dynamics. Using this microscopy, we investigated carrier dynamics in the gap region of low-temperature-grown GaAs and semi-insulating GaAs photoconductive switches of the identical-dipole type. The observed DTEM images are well explained by the change in the electric potential distribution between the electrodes caused by the screening effect of the photoexcited electron-hole pairs.

© 2016 Chinese Laser Press

Full Article  |  PDF Article

Corrections

Hironaru Murakami, Shogo Fujiwara, Iwao Kawayama, and Masayoshi Tonouchi, "Study of photoexcited-carrier dynamics in GaAs photoconductive switches using dynamic terahertz emission microscopy: publisher’s note," Photon. Res. 4, 208-208 (2016)
https://www.osapublishing.org/prj/abstract.cfm?uri=prj-4-5-208

25 August 2016: A correction was made to the funding section.


OSA Recommended Articles
Carrier dynamics of terahertz emission from low-temperature-grown GaAs

Dongfeng Liu and Jiayin Qin
Appl. Opt. 42(18) 3678-3683 (2003)

Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection

Abhishek Singh, Sanjoy Pal, Harshad Surdi, S. S. Prabhu, S. Mathimalar, Vandana Nanal, R. G. Pillay, and G.H. Döhler
Opt. Express 23(5) 6656-6661 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
    [Crossref]
  2. B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709–2712 (1991).
    [Crossref]
  3. W. Sha, J. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445–2455 (1992).
    [Crossref]
  4. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
    [Crossref]
  5. S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
    [Crossref]
  6. F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
    [Crossref]
  7. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  8. J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
    [Crossref]
  9. E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
    [Crossref]
  10. V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2507 (2002).
    [Crossref]
  11. R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
    [Crossref]
  12. A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon, “The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs,” Appl. Phys. Lett. 69, 1465–1467 (1996).
    [Crossref]
  13. K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
    [Crossref]
  14. H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
    [Crossref]
  15. M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
    [Crossref]
  16. M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
    [Crossref]
  17. K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, “Field screening in low-temperature-grown GaAs photoconductive antennas,” Jpn. J. Appl. Phys. 43, 1038–1043 (2004).
    [Crossref]
  18. S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14, 498–504 (2008).
    [Crossref]
  19. H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
    [Crossref]
  20. H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
    [Crossref]
  21. F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
    [Crossref]
  22. L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
    [Crossref]
  23. J. D. Wiley, “Mobility of holes in III-V compounds,” in Semiconductor and Semimetals, R. K. Willardson and A. C. Beer, eds. (Academic, 1975), Vol. 10, Chap. 2, pp. 91–174.
  24. T. Matsumura, H. Emori, K. Terashima, and T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 22, L154–L156 (1983).
    [Crossref]
  25. H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
    [Crossref]
  26. C. Erginsoy, “Neutral impurity scattering in semiconductors,” Phys. Rev. 79, 1013–1014 (1950).
    [Crossref]
  27. C. W. Siders, J. L. W. Siders, A. J. Taylor, S.-G. Park, M. R. Melloch, and A. M. Weiner, “Generation and characterization of terahertz pulse trains from biased, large-aperture photoconductors,” Opt. Lett. 24, 241–243 (1999).
    [Crossref]

2014 (1)

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

2008 (1)

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14, 498–504 (2008).
[Crossref]

2007 (2)

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2004 (1)

K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, “Field screening in low-temperature-grown GaAs photoconductive antennas,” Jpn. J. Appl. Phys. 43, 1038–1043 (2004).
[Crossref]

2003 (1)

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

2002 (3)

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2507 (2002).
[Crossref]

M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
[Crossref]

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

2001 (1)

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

2000 (1)

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

1999 (1)

1997 (2)

L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
[Crossref]

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[Crossref]

1996 (1)

A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon, “The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs,” Appl. Phys. Lett. 69, 1465–1467 (1996).
[Crossref]

1993 (2)

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

1992 (3)

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

W. Sha, J. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445–2455 (1992).
[Crossref]

1991 (2)

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709–2712 (1991).
[Crossref]

1989 (1)

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

1988 (1)

F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
[Crossref]

1983 (1)

T. Matsumura, H. Emori, K. Terashima, and T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 22, L154–L156 (1983).
[Crossref]

1950 (1)

C. Erginsoy, “Neutral impurity scattering in semiconductors,” Phys. Rev. 79, 1013–1014 (1950).
[Crossref]

Adomavicius, R.

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

Alexandrou, A.

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2507 (2002).
[Crossref]

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Auston, D. H.

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709–2712 (1991).
[Crossref]

Bertulis, K.

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

Brown, E. R.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[Crossref]

Butkus, R.

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

Calawa, A.

F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
[Crossref]

Calawa, A. R.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Chang, C. L.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Chang, J. C. P.

A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon, “The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs,” Appl. Phys. Lett. 69, 1465–1467 (1996).
[Crossref]

Chen, C.-L.

F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
[Crossref]

Diadiuk, V.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Dykaar, D. R.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Emori, H.

T. Matsumura, H. Emori, K. Terashima, and T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 22, L154–L156 (1983).
[Crossref]

Erginsoy, C.

C. Erginsoy, “Neutral impurity scattering in semiconductors,” Phys. Rev. 79, 1013–1014 (1950).
[Crossref]

Fox, A. M.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Frankel, M.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Frankel, M. Y.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Fujiwara, S.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

Fukuda, T.

T. Matsumura, H. Emori, K. Terashima, and T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 22, L154–L156 (1983).
[Crossref]

Gupta, S.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Harmon, E. S.

A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon, “The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs,” Appl. Phys. Lett. 69, 1465–1467 (1996).
[Crossref]

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Hollis, M. A.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Hsiallg, T. Y.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Hu, B. B.

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709–2712 (1991).
[Crossref]

Hvam, J. M.

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

Iguchi, I.

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

Inoue, R.

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

Kawasaki, N.

M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
[Crossref]

Kawayama, I.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

Keiding, S. R.

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

Khazan, M.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

Kida, N.

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

Kiihler, K.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Kim, S.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14, 498–504 (2008).
[Crossref]

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

Kiwa, T.

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

Krotkus, A.

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

Kumar, A.

L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
[Crossref]

Kuzel, P.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

Lampin, J. F.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Landman, L.

L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
[Crossref]

Le, H. Q.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Leo, K.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Lindelof, P. E.

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

Lisauskas, A.

K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, “Field screening in low-temperature-grown GaAs photoconductive antennas,” Jpn. J. Appl. Phys. 43, 1038–1043 (2004).
[Crossref]

Lochtefeld, A. J.

A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon, “The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs,” Appl. Phys. Lett. 69, 1465–1467 (1996).
[Crossref]

Löffler, T.

K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, “Field screening in low-temperature-grown GaAs photoconductive antennas,” Jpn. J. Appl. Phys. 43, 1038–1043 (2004).
[Crossref]

Lyssenko, V. G.

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

Maekawa, Y.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

Mahoney, L.

F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
[Crossref]

Manfra, M.

F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
[Crossref]

Matsuda, E.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

Matsumura, T.

T. Matsumura, H. Emori, K. Terashima, and T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 22, L154–L156 (1983).
[Crossref]

McIntosh, K. A.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[Crossref]

Melloch, M. R.

C. W. Siders, J. L. W. Siders, A. J. Taylor, S.-G. Park, M. R. Melloch, and A. M. Weiner, “Generation and characterization of terahertz pulse trains from biased, large-aperture photoconductors,” Opt. Lett. 24, 241–243 (1999).
[Crossref]

A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon, “The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs,” Appl. Phys. Lett. 69, 1465–1467 (1996).
[Crossref]

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Miller, D. A. B.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Morgan, C. G.

L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
[Crossref]

Moumu, G.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Mourou, G. A.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Murakami, H.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14, 498–504 (2008).
[Crossref]

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

Nagle, J.

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2507 (2002).
[Crossref]

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Nemec, H.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

Nichols, K. B.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[Crossref]

Nolte, D. D.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Norris, T. B.

W. Sha, J. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445–2455 (1992).
[Crossref]

Nuss, M. C.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Ortiz, V.

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2507 (2002).
[Crossref]

Otsuka, N.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Papoulias, P.

L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
[Crossref]

Park, S.-G.

Pashkin, A.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

Pedersen, J. E.

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

Piskarskas, A.

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

Rhee, J.

W. Sha, J. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445–2455 (1992).
[Crossref]

Roskos, H. G.

K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, “Field screening in low-temperature-grown GaAs photoconductive antennas,” Jpn. J. Appl. Phys. 43, 1038–1043 (2004).
[Crossref]

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Santoro, P.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Schaff, W. J.

W. Sha, J. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445–2455 (1992).
[Crossref]

Schick, J. T.

L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
[Crossref]

Schmitt-Rink, S.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Schnull, S.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

Seidel, P.

M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
[Crossref]

Serita, K.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

Sha, W.

W. Sha, J. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445–2455 (1992).
[Crossref]

Shah, J.

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

Siders, C. W.

Siders, J. L. W.

Siebert, K. J.

K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, “Field screening in low-temperature-grown GaAs photoconductive antennas,” Jpn. J. Appl. Phys. 43, 1038–1043 (2004).
[Crossref]

Sirutkaitis, V.

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

Smith, F.

F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
[Crossref]

Smith, F. W.

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Sorensen, C. B.

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

Stellmacher, M.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Taylor, A. J.

Terashima, K.

T. Matsumura, H. Emori, K. Terashima, and T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 22, L154–L156 (1983).
[Crossref]

Tonouchi, M.

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14, 498–504 (2008).
[Crossref]

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
[Crossref]

Uchida, N.

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

Uchiyama, T.

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

Uhd Jepsen, P.

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

Valdmanis, J. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Vaneecloo, J.

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

Verghese, S.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[Crossref]

Wald, H.

M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
[Crossref]

Wang, Z.

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

Weiner, A. M.

Whitaker, J. F.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Wiley, J. D.

J. D. Wiley, “Mobility of holes in III-V compounds,” in Semiconductor and Semimetals, R. K. Willardson and A. C. Beer, eds. (Academic, 1975), Vol. 10, Chap. 2, pp. 91–174.

Wilke, I.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

Woodall, J. M.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Yoshimura, T.

M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
[Crossref]

Zhang, X.-C.

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709–2712 (1991).
[Crossref]

Appl. Phys. Lett. (8)

J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antenna,” Appl. Phys. Lett. 62, 1265–1267 (1993).
[Crossref]

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2507 (2002).
[Crossref]

R. Adomavicius, A. Krotkus, K. Bertulis, V. Sirutkaitis, R. Butkus, and A. Piskarskas, “Hole trapping time measurement in low-temperature-grown gallium arsenide,” Appl. Phys. Lett. 83, 5304–5306 (2003).
[Crossref]

A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon, “The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs,” Appl. Phys. Lett. 69, 1465–1467 (1996).
[Crossref]

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

F. W. Smith, S. Gupta, H. Q. Le, M. Frankel, V. Diadiuk, D. R. Dykaar, M. A. Hollis, G. Moumu, A. R. Calawa, and T. Y. Hsiallg, “Picosecond GaAs‐based photoconductive optoelectronic detectors,” Appl. Phys. Lett. 54, 890–892 (1989).
[Crossref]

Europhys. Lett. (1)

H. Murakami, T. Kiwa, N. Kida, M. Tonouchi, T. Uchiyama, I. Iguchi, and Z. Wang, “Partial and macroscopic phase coherences in an underdoped Bi2Sr2CaCu2O8+δ thin film,” Europhys. Lett. 60, 288–294 (2002).
[Crossref]

IEEE Electron. Dev. Lett. (1)

F. Smith, A. Calawa, C.-L. Chen, M. Manfra, and L. Mahoney, “New MBE buffer used to eliminate backgating in GaAs MESFETs,” IEEE Electron. Dev. Lett. 9, 77–80 (1988).
[Crossref]

IEEE J. Quantum Electron. (2)

W. Sha, J. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445–2455 (1992).
[Crossref]

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14, 498–504 (2008).
[Crossref]

J. Appl. Phys. (2)

M. Stellmacher, J. Nagle, J. F. Lampin, P. Santoro, J. Vaneecloo, and A. Alexandrou, “Dependence of the carrier lifetime on acceptor concentration in GaAs grown at low-temperature under different growth and annealing conditions,” J. Appl. Phys. 88, 6026–6031 (2000).
[Crossref]

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90, 1303–1306 (2001).
[Crossref]

J. Phys. D (1)

H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi, “Scanning laser THz imaging system,” J. Phys. D 47, 374007 (2014).
[Crossref]

Jpn. J. Appl. Phys. (3)

T. Matsumura, H. Emori, K. Terashima, and T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 22, L154–L156 (1983).
[Crossref]

M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, “Pump and probe terahertz generation study of ultrafast carrier dynamics in low-temperature-grown GaAs,” Jpn. J. Appl. Phys. 41, L706–L709 (2002).
[Crossref]

K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, “Field screening in low-temperature-grown GaAs photoconductive antennas,” Jpn. J. Appl. Phys. 43, 1038–1043 (2004).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

C. Erginsoy, “Neutral impurity scattering in semiconductors,” Phys. Rev. 79, 1013–1014 (1950).
[Crossref]

Phys. Rev. B (1)

L. Landman, C. G. Morgan, J. T. Schick, P. Papoulias, and A. Kumar, “Arsenic interstitials and interstitial complexes in low-temperature grown GaAs,” Phys. Rev. B 55, 15581–15586 (1997).
[Crossref]

Phys. Rev. Lett. (2)

H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kiihler, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216–2219 (1992).
[Crossref]

B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs,” Phys. Rev. Lett. 67, 2709–2712 (1991).
[Crossref]

Proc. IEEE (1)

H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, “Laser terahertz emission microscope,” Proc. IEEE 95, 1646–1657 (2007).
[Crossref]

Other (1)

J. D. Wiley, “Mobility of holes in III-V compounds,” in Semiconductor and Semimetals, R. K. Willardson and A. C. Beer, eds. (Academic, 1975), Vol. 10, Chap. 2, pp. 91–174.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of the optical-system setup for DTEM. This system can also observe laser reflection images of a sample by monitoring the reflection beam of the probe laser using a photodiode.
Fig. 2.
Fig. 2. (a) Laser reflection image of LT-GaAs PCA with a 5 μm long and a 10 μm wide gap region and (b) a line profile along the inserted line in (a). The spatial resolution was estimated as 1.5  μm from 10% to 90% of the width of the degree of leaning of the boundary line.
Fig. 3.
Fig. 3. (a) LTEM image of the LT-GaAs PCA obtained under the laser-power conditions of Ppump=0  mW and Pprobe=1  mW and (b) DTEM image of the LT-GaAs PCA obtained before the 2.5 ps of a pump pulse irradiation under laser-power conditions of Ppump=30  mW and Pprobe=1  mW. To clarify the region of the THz pulse emission, each image is superimposed on its laser reflection image. The brightness corresponds to the strength of the THz pulse emission. (c) and (d) show the band profiles between the electrodes expected from (a) the LTEM image and (b) the DTEM image, respectively. Here, (c) indicates that the electric-field screening slightly occurs in the central gap region between the electrodes, probably due to the space charge formed between spatially separated electrons in the conduction band and the holes trapped at some localized impurity (or defect) states with a long relaxation time.
Fig. 4.
Fig. 4. Optical pump-and-probe THz emission spectra observed near the positive electrode (red), near the negative electrode (blue), and at the center (black) of the gap region, as indicated by the correspondingly colored circles in Fig. 3(b). The arrow at t=2.5  ps indicates the simultaneous irradiation of the sample with pump and probe pulses.
Fig. 5.
Fig. 5. Time variation of a 3D map of the THz pulse amplitude emitted from a rectangular region of 12  μm×5  μm, including both electrodes, as shown in the bottom illustration. The pump pulse was irradiated to the entire LT-GaAs area at t=2.5  ps.
Fig. 6.
Fig. 6. Spatiotemporal 3D plot of the amplitude of the THz pulse emitted along the central line in the x direction of Fig. 3(b) [corresponding to the inserted line in Fig. 2(a)]. The red and yellow arrows indicate the middle position in the gap region between the two electrodes and the time taken for the simultaneous irradiation of the pump and probe pulses to the sample, respectively.
Fig. 7.
Fig. 7. (a) LTEM image of the SI-GaAs PCA obtained under laser-power conditions of Ppump=0  mW and Pprobe=1  mW and (b) DTEM image of the SI-GaAs PCA obtained before the 12 ps of a pump pulse irradiation under laser-power conditions of Ppump=30  mW and Pprobe=1  mW. To clarify the region of the THz pulse emission, each image is superimposed on its laser reflection image. The brightness corresponds to the strength of the THz pulse emission. (c) and (d) show the band profiles between the electrodes expected from (a) the LTEM image and (b) the DTEM image, respectively. Here, (c) indicates that the electric-field screening strongly occurs near the positively biased electrode due to the space charge formed between spatially separated electron-hole pairs.
Fig. 8.
Fig. 8. DTEM image of the SI-GaAs PCA obtained before the pump pulse irradiation under the laser-power condition of Ppump=Pprobe=1  mW. To clarify the region of the THz pulse emission, the image is superimposed on its laser reflection image. In this laser-power condition, the strong screening effect due to the spatially separated electron-hole pairs was restricted, and THz pulse emission occurred more strongly near the positively biased electrode than near the negatively biased electrode.
Fig. 9.
Fig. 9. Optical pump-and-probe THz emission spectra observed near the positive electrode (red), near the negative electrode (blue), and at the center (black) of the gap region. The arrow at t=12  ps indicates the simultaneous irradiation of the pump and probe pulses to the sample.
Fig. 10.
Fig. 10. Time variation of the 3D map of the THz pulse amplitude emitted from the rectangular region of 12  μm×5  μm, including both electrodes, as shown at the bottom. The pump pulse was irradiated to the entire SI-GaAs area at t=12  ps.
Fig. 11.
Fig. 11. Spatiotemporal 3D plot of the amplitude of the THz pulse emitted along the central line in the x direction of Fig. 8(a). The red and yellow arrows indicate the middle position in the gap region between the two electrodes and the time taken for the simultaneous irradiation of the pump and probe pulses to the sample, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ETHzJ/t,

Metrics