Abstract

Photoconductive switches were the key components that allowed the generation and detection of coherent broadband electromagnetic pulses at terahertz frequencies, opening the possibility for performing spectroscopy and, therefore, measuring complex dielectric properties of materials in this band, which was mostly unexplored. In this paper, we present a brief introduction to the operation principles of these devices. Subsequently, we present a review of the current state-of-the-art in this field and discuss the challenges to be faced in future development of these devices.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Computational modeling of plasmonic thin-film terahertz photoconductive antennas

Nathan Burford and Magda El-Shenawee
J. Opt. Soc. Am. B 33(4) 748-759 (2016)

Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection

Abhishek Singh, Sanjoy Pal, Harshad Surdi, S. S. Prabhu, S. Mathimalar, Vandana Nanal, R. G. Pillay, and G.H. Döhler
Opt. Express 23(5) 6656-6661 (2015)

An ion-implanted InP receiver for polarization resolved terahertz spectroscopy

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H.H. Tan, C. Jagadish, and M. B. Johnston
Opt. Express 15(11) 7047-7057 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philos. Trans. R. Soc. A 362, 199–213 (2004).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  3. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
    [Crossref]
  4. D. H. Auston and P. R. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43, 631–633 (1983).
    [Crossref]
  5. D. H. Auston, “Impulse-response of photoconductors in transmission-lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
    [Crossref]
  6. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
    [Crossref]
  7. M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
    [Crossref]
  8. K. P. Cheung and D. H. Auston, “A novel technique for measuring far-infrared absorption and dispersion,” Infrared Phys. 26, 23–27 (1986).
    [Crossref]
  9. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).
    [Crossref]
  10. D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24, 184–197 (1988).
    [Crossref]
  11. J. Dai, J. Liu, and X.-C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
    [Crossref]
  12. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
    [Crossref]
  13. C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
    [Crossref]
  14. L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
    [Crossref]
  15. J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
    [Crossref]
  16. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
    [Crossref]
  17. M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
    [Crossref]
  18. E. Castro-Camus, M. Palomar, and A. Covarrubias, “Leaf water dynamics of arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3, 2910 (2013).
    [Crossref]
  19. R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
    [Crossref]
  20. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
    [Crossref]
  21. B. Born and M. Havenith, “Terahertz dance of proteins and sugars with water,” J. Infrared Millimeter Terahertz Waves 30, 1245–1254 (2009).
  22. R. J. Falconer and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” J. Infrared Millimeter Terahertz Waves 33, 973–988 (2012).
    [Crossref]
  23. K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
    [Crossref]
  24. K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
    [Crossref]
  25. C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
    [Crossref]
  26. M. Schwerdtfeger, S. Lippert, M. Koch, A. Berg, S. Katletz, and K. Wiesauer, “Terahertz time-domain spectroscopy for monitoring the curing of dental composites,” Biomed. Opt. Express 3, 2842–2850 (2012).
    [Crossref]
  27. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
    [Crossref]
  28. I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
    [Crossref]
  29. Y. Kamo, S. Kitazawa, S. Ohshima, and Y. Hosoda, “Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates,” Jpn. J. Appl. Phys. 53, 032201 (2014).
    [Crossref]
  30. W. Hou and L. Shi, “An lt-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60, 1619–1624 (2013).
    [Crossref]
  31. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
    [Crossref]
  32. N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared Millimeter Terahertz Waves 34, 519–528 (2013).
    [Crossref]
  33. M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
    [Crossref]
  34. P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, and K. M. Dani, “20  THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas,” Opt. Express 22, 26358–26364 (2014).
    [Crossref]
  35. S. A. F. Sirbu and M. Lepaul, “Coupling 3-d Maxwell’s and Boltzmann’s equations for analyzing a terahertz photoconductive switch,” IEEE Trans. Microwave Theory Tech. 53, 2991–2998 (2005).
    [Crossref]
  36. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
    [Crossref]
  37. M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 ?m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
    [Crossref]
  38. J. Zhang, Y. Hong, S. Braunstein, and K. Shore, “Terahertz pulse generation and detection with lt-GaAs photoconductive antenna,” in IEE Proceedings of Optoelectronics (IET, 2004), Vol. 151, pp. 98–101.
  39. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
    [Crossref]
  40. R. J. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6  THz bandwidth and 90db dynamic range,” Opt. Express 22, 19411–19422 (2014).
    [Crossref]
  41. I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2, 617–622 (2012).
    [Crossref]
  42. A. Singh, S. Pal, H. Surdi, S. S. Prabhu, S. Mathimalar, V. Nanal, R. G. Pillay, and G. Döhler, “Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection,” Opt. Express 23, 6656–6661 (2015).
    [Crossref]
  43. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
    [Crossref]
  44. J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
    [Crossref]
  45. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  m femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504 (2005).
    [Crossref]
  46. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
    [Crossref]
  47. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
    [Crossref]
  48. D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
    [Crossref]
  49. A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
    [Crossref]
  50. K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
    [Crossref]
  51. M. Kinch, S. Borrello, B. Breazeale, and A. Simmons, “Geometrical enhancement of hgcdte photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
    [Crossref]
  52. X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116, 043107 (2014).
    [Crossref]
  53. N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
    [Crossref]
  54. A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
    [Crossref]
  55. F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
    [Crossref]
  56. K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
    [Crossref]
  57. C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
    [Crossref]
  58. F. D. Brunner and T. Feurer, “Antireflection coatings optimized for single-cycle THz pulses,” Appl. Opt. 52, 3829–3832 (2013).
    [Crossref]
  59. O. Mitrofanov, I. Brener, T. S. Luk, and J. L. Reno, “Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity,” ACS Photon. 2, 1763–1768 (2015).
    [Crossref]
  60. M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
    [Crossref]
  61. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
    [Crossref]
  62. M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
    [Crossref]
  63. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96–100 (2000).
    [Crossref]
  64. M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
    [Crossref]
  65. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301 (2005).
    [Crossref]
  66. J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
    [Crossref]
  67. M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
    [Crossref]
  68. D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117 (2006).
    [Crossref]
  69. E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
    [Crossref]
  70. E. Castro-Camus, M. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27, 115011 (2012).
    [Crossref]
  71. F. Zangeneh-Nejad, N. Barani, and R. Safian, “Temperature dependence of electromagnetic radiation from terahertz photoconductive antennas,” Microwave Opt. Technol. Lett. 57, 2475–2479 (2015).
    [Crossref]
  72. V. Malevich and G. Sinitsyn, “Response speed of terahertz photoconductive receiver antennas when excited by femtosecond laser pulses,” J. Appl. Spectrosc. 80, 289–293 (2013).
    [Crossref]
  73. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
    [Crossref]
  74. R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
    [Crossref]
  75. J. Vanrudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” J. Opt. Soc. Am. B 18, 1524–1533 (2001).
    [Crossref]
  76. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31, 1546–1548 (2006).
    [Crossref]
  77. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18, 9251–9257 (2010).
    [Crossref]
  78. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
    [Crossref]
  79. C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref]
  80. M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5, 391–397 (2015).
    [Crossref]
  81. S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A hybrid analysis method for plasmonic enhanced terahertz photomixer sources,” Opt. Express 21, 11115–11124 (2013).
    [Crossref]
  82. S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4, 575–581 (2014).
    [Crossref]
  83. S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20, 25530–25535 (2012).
    [Crossref]
  84. A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
    [Crossref]
  85. K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
    [Crossref]
  86. S. Corzo-Garcia, M. Alfaro, and E. Castro-Camus, “Transit time enhanced bandwidth in nanostructured terahertz emitters,” J. Infrared Millimeter Terahertz Waves 35, 987–992 (2014).
    [Crossref]
  87. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
    [Crossref]
  88. H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007).
    [Crossref]
  89. G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, and M. Tani, “A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis,” Opt. Express 23, 16184–16195 (2015).
    [Crossref]
  90. A. Hussain and S. R. Andrews, “Ultrabroadband polarization analysis of terahertz pulses,” Opt. Express 16, 7251–7257 (2008).
    [Crossref]
  91. E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Millimeter Terahertz Waves 33, 418–430 (2012).
    [Crossref]
  92. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
    [Crossref]
  93. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express 17, 1571–1576 (2009).
    [Crossref]
  94. K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
    [Crossref]
  95. J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
    [Crossref]
  96. J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.
  97. M. Scheller, S. F. Dürrschmidt, M. Stecher, and M. Koch, “Terahertz quasi-time-domain spectroscopy imaging,” Appl. Opt. 50, 1884–1888 (2011).
    [Crossref]

2015 (14)

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
[Crossref]

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

O. Mitrofanov, I. Brener, T. S. Luk, and J. L. Reno, “Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity,” ACS Photon. 2, 1763–1768 (2015).
[Crossref]

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

F. Zangeneh-Nejad, N. Barani, and R. Safian, “Temperature dependence of electromagnetic radiation from terahertz photoconductive antennas,” Microwave Opt. Technol. Lett. 57, 2475–2479 (2015).
[Crossref]

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5, 391–397 (2015).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, S. Mathimalar, V. Nanal, R. G. Pillay, and G. Döhler, “Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection,” Opt. Express 23, 6656–6661 (2015).
[Crossref]

G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, and M. Tani, “A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis,” Opt. Express 23, 16184–16195 (2015).
[Crossref]

2014 (9)

R. J. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6  THz bandwidth and 90db dynamic range,” Opt. Express 22, 19411–19422 (2014).
[Crossref]

P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, and K. M. Dani, “20  THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas,” Opt. Express 22, 26358–26364 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4, 575–581 (2014).
[Crossref]

S. Corzo-Garcia, M. Alfaro, and E. Castro-Camus, “Transit time enhanced bandwidth in nanostructured terahertz emitters,” J. Infrared Millimeter Terahertz Waves 35, 987–992 (2014).
[Crossref]

E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
[Crossref]

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116, 043107 (2014).
[Crossref]

M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Y. Kamo, S. Kitazawa, S. Ohshima, and Y. Hosoda, “Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates,” Jpn. J. Appl. Phys. 53, 032201 (2014).
[Crossref]

2013 (10)

W. Hou and L. Shi, “An lt-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60, 1619–1624 (2013).
[Crossref]

E. Castro-Camus, M. Palomar, and A. Covarrubias, “Leaf water dynamics of arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3, 2910 (2013).
[Crossref]

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared Millimeter Terahertz Waves 34, 519–528 (2013).
[Crossref]

V. Malevich and G. Sinitsyn, “Response speed of terahertz photoconductive receiver antennas when excited by femtosecond laser pulses,” J. Appl. Spectrosc. 80, 289–293 (2013).
[Crossref]

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A hybrid analysis method for plasmonic enhanced terahertz photomixer sources,” Opt. Express 21, 11115–11124 (2013).
[Crossref]

F. D. Brunner and T. Feurer, “Antireflection coatings optimized for single-cycle THz pulses,” Appl. Opt. 52, 3829–3832 (2013).
[Crossref]

2012 (9)

M. Schwerdtfeger, S. Lippert, M. Koch, A. Berg, S. Katletz, and K. Wiesauer, “Terahertz time-domain spectroscopy for monitoring the curing of dental composites,” Biomed. Opt. Express 3, 2842–2850 (2012).
[Crossref]

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20, 25530–25535 (2012).
[Crossref]

E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Millimeter Terahertz Waves 33, 418–430 (2012).
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2, 617–622 (2012).
[Crossref]

E. Castro-Camus, M. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27, 115011 (2012).
[Crossref]

A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
[Crossref]

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

R. J. Falconer and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” J. Infrared Millimeter Terahertz Waves 33, 973–988 (2012).
[Crossref]

2011 (4)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

J. Dai, J. Liu, and X.-C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

M. Scheller, S. F. Dürrschmidt, M. Stecher, and M. Koch, “Terahertz quasi-time-domain spectroscopy imaging,” Appl. Opt. 50, 1884–1888 (2011).
[Crossref]

2010 (1)

2009 (2)

2008 (3)

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

A. Hussain and S. R. Andrews, “Ultrabroadband polarization analysis of terahertz pulses,” Opt. Express 16, 7251–7257 (2008).
[Crossref]

2007 (6)

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007).
[Crossref]

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

2006 (6)

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117 (2006).
[Crossref]

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
[Crossref]

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31, 1546–1548 (2006).
[Crossref]

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
[Crossref]

2005 (7)

S. A. F. Sirbu and M. Lepaul, “Coupling 3-d Maxwell’s and Boltzmann’s equations for analyzing a terahertz photoconductive switch,” IEEE Trans. Microwave Theory Tech. 53, 2991–2998 (2005).
[Crossref]

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  m femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504 (2005).
[Crossref]

2004 (4)

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philos. Trans. R. Soc. A 362, 199–213 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

2003 (5)

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

2002 (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

2001 (2)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

J. Vanrudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” J. Opt. Soc. Am. B 18, 1524–1533 (2001).
[Crossref]

2000 (4)

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 ?m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[Crossref]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96–100 (2000).
[Crossref]

M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
[Crossref]

1997 (1)

1996 (1)

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).
[Crossref]

1988 (1)

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24, 184–197 (1988).
[Crossref]

1986 (1)

K. P. Cheung and D. H. Auston, “A novel technique for measuring far-infrared absorption and dispersion,” Infrared Phys. 26, 23–27 (1986).
[Crossref]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

1983 (2)

D. H. Auston and P. R. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43, 631–633 (1983).
[Crossref]

D. H. Auston, “Impulse-response of photoconductors in transmission-lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
[Crossref]

1977 (1)

M. Kinch, S. Borrello, B. Breazeale, and A. Simmons, “Geometrical enhancement of hgcdte photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
[Crossref]

Abhilash, T.

M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Abstreiter, G.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Adomavicius, R.

A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
[Crossref]

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

Alarcon, E.

A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
[Crossref]

Aleksejenko, G.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

Alfaro, M.

S. Corzo-Garcia, M. Alfaro, and E. Castro-Camus, “Transit time enhanced bandwidth in nanostructured terahertz emitters,” J. Infrared Millimeter Terahertz Waves 35, 987–992 (2014).
[Crossref]

Allen, J.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

Allen, S. J.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Andrews, S. R.

Arlauskas, A.

A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
[Crossref]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Auston, D. H.

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24, 184–197 (1988).
[Crossref]

K. P. Cheung and D. H. Auston, “A novel technique for measuring far-infrared absorption and dispersion,” Infrared Phys. 26, 23–27 (1986).
[Crossref]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

D. H. Auston and P. R. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43, 631–633 (1983).
[Crossref]

D. H. Auston, “Impulse-response of photoconductors in transmission-lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
[Crossref]

Averitt, R. D.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
[Crossref]

Avouris, P.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Bahrami-Yekta, V.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

Baker, C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Barani, N.

F. Zangeneh-Nejad, N. Barani, and R. Safian, “Temperature dependence of electromagnetic radiation from terahertz photoconductive antennas,” Microwave Opt. Technol. Lett. 57, 2475–2479 (2015).
[Crossref]

Beck, M.

Beere, H. E.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Berg, A.

Berry, C.

C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Berry, C. W.

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4, 575–581 (2014).
[Crossref]

Bertulis, K.

A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
[Crossref]

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

Bichler, M.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Bieler, M.

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[Crossref]

M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
[Crossref]

Birge, R. R.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Boland, J. L.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

Born, B.

B. Born and M. Havenith, “Terahertz dance of proteins and sugars with water,” J. Infrared Millimeter Terahertz Waves 30, 1245–1254 (2009).

Born, N.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

Borrello, S.

M. Kinch, S. Borrello, B. Breazeale, and A. Simmons, “Geometrical enhancement of hgcdte photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
[Crossref]

Bouvier, M.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116, 043107 (2014).
[Crossref]

Braunstein, S.

J. Zhang, Y. Hong, S. Braunstein, and K. Shore, “Terahertz pulse generation and detection with lt-GaAs photoconductive antenna,” in IEE Proceedings of Optoelectronics (IET, 2004), Vol. 151, pp. 98–101.

Breazeale, B.

M. Kinch, S. Borrello, B. Breazeale, and A. Simmons, “Geometrical enhancement of hgcdte photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
[Crossref]

Brener, I.

O. Mitrofanov, I. Brener, T. S. Luk, and J. L. Reno, “Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity,” ACS Photon. 2, 1763–1768 (2015).
[Crossref]

Brodschelm, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Brunner, F. D.

Bulgarevich, D. S.

Burkard, G.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Burton Lewis, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Busch, S.

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Cabellos-Aparicio, A.

A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
[Crossref]

Castro-Camus, E.

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

S. Corzo-Garcia, M. Alfaro, and E. Castro-Camus, “Transit time enhanced bandwidth in nanostructured terahertz emitters,” J. Infrared Millimeter Terahertz Waves 35, 987–992 (2014).
[Crossref]

E. Castro-Camus, M. Palomar, and A. Covarrubias, “Leaf water dynamics of arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3, 2910 (2013).
[Crossref]

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

E. Castro-Camus, M. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27, 115011 (2012).
[Crossref]

E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Millimeter Terahertz Waves 33, 418–430 (2012).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Chamberlain, J. M.

J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philos. Trans. R. Soc. A 362, 199–213 (2004).
[Crossref]

Chaudhary, A.

M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Cheung, K. P.

K. P. Cheung and D. H. Auston, “A novel technique for measuring far-infrared absorption and dispersion,” Infrared Phys. 26, 23–27 (1986).
[Crossref]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Chin, C.

Choi, Y.

Citrin, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117 (2006).
[Crossref]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Corzo-Garcia, S.

S. Corzo-Garcia, M. Alfaro, and E. Castro-Camus, “Transit time enhanced bandwidth in nanostructured terahertz emitters,” J. Infrared Millimeter Terahertz Waves 35, 987–992 (2014).
[Crossref]

Coutaz, J.-L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).
[Crossref]

Covarrubias, A.

E. Castro-Camus, M. Palomar, and A. Covarrubias, “Leaf water dynamics of arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3, 2910 (2013).
[Crossref]

Cunningham, J. E.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Dai, J.

J. Dai, J. Liu, and X.-C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

Dani, K. M.

Darcie, T. E.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Davies, A. G.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Dekorsy, T.

Demsar, J.

Dhillon, S. S.

Dietz, R. J.

Dietz, R. J. B.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

Döhler, G.

Dreyhaupt, A.

Dürrschmidt, S. F.

Duvillaret, L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).
[Crossref]

Eckart, S.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Eggert, S.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Ehrke, H.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

Estacio, E. S.

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

Evans, M. J.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Failla, M.

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

Falconer, R. J.

R. J. Falconer and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” J. Infrared Millimeter Terahertz Waves 33, 973–988 (2012).
[Crossref]

Ferrari, A.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Feurer, T.

Fischer, B.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
[Crossref]

Fraser, M. D.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Fu, L.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

Fukunaga, K.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

Funkner, S.

Furuya, T.

Galan, J.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Galan, J. F.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

Gao, Q.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

Garca, S.

E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
[Crossref]

Garet, F.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).
[Crossref]

Gbel, T.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

Gente, R.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

Globisch, B.

Göbel, T.

Gopalsami, N.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Gordon, R.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Gossard, A. C.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
[Crossref]

Gotoh, H.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

Gray, K. E.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Gregory, I. S.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Guo, Y.-N.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

Haglund, J. R. F.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

Halabica, A.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

Hale, P. J.

Han, S.-P.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Hangyo, M.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007).
[Crossref]

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
[Crossref]

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
[Crossref]

Hashemi, M.

C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Hashemi, M. R.

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4, 575–581 (2014).
[Crossref]

Hattori, R.

Hattori, T.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

Havenith, M.

B. Born and M. Havenith, “Terahertz dance of proteins and sugars with water,” J. Infrared Millimeter Terahertz Waves 30, 1245–1254 (2009).

Headley, C.

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

Hegmann, F. A.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Hein, G.

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[Crossref]

M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
[Crossref]

Helm, H.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
[Crossref]

Helm, M.

Herz, L. M.

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

Heshmat, B.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Hibi, M.

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

Hirayama, Y.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

Hirota, Y.

Hoffmann, M.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
[Crossref]

Hong, Y.

J. Zhang, Y. Hong, S. Braunstein, and K. Shore, “Terahertz pulse generation and detection with lt-GaAs photoconductive antenna,” in IEE Proceedings of Optoelectronics (IET, 2004), Vol. 151, pp. 98–101.

Hosako, I.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

Hosoda, Y.

Y. Kamo, S. Kitazawa, S. Ohshima, and Y. Hosoda, “Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates,” Jpn. J. Appl. Phys. 53, 032201 (2014).
[Crossref]

Hou, W.

W. Hou and L. Shi, “An lt-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60, 1619–1624 (2013).
[Crossref]

Hsu, A.

A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
[Crossref]

Huber, R.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Hunter, N.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Hussain, A.

Jafarlou, S.

Jagadish, C.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Jarrahi, M.

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5, 391–397 (2015).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4, 575–581 (2014).
[Crossref]

C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared Millimeter Terahertz Waves 34, 519–528 (2013).
[Crossref]

Jeong, K.-H.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
[Crossref]

Jiang, N.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

Johnson, J. L.

Johnson, M. B.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Johnston, M.

E. Castro-Camus, M. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27, 115011 (2012).
[Crossref]

Johnston, M. B.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

Jones, S.

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

Jooshesh, A.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

Joyce, H. J.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

Kadowaki, K.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

Kamo, Y.

Y. Kamo, S. Kitazawa, S. Ohshima, and Y. Hosoda, “Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates,” Jpn. J. Appl. Phys. 53, 032201 (2014).
[Crossref]

Kan, K.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Katletz, S.

Khan, A. L. T.

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

Kim, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117 (2006).
[Crossref]

Kim, N.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Kinch, M.

M. Kinch, S. Borrello, B. Breazeale, and A. Simmons, “Geometrical enhancement of hgcdte photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
[Crossref]

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

Kitahara, H.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Kitazawa, S.

Y. Kamo, S. Kitazawa, S. Ohshima, and Y. Hosoda, “Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates,” Jpn. J. Appl. Phys. 53, 032201 (2014).
[Crossref]

Klatt, G.

Knzel, H.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

Ko, H.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Koch, M.

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

M. Schwerdtfeger, S. Lippert, M. Koch, A. Berg, S. Katletz, and K. Wiesauer, “Terahertz time-domain spectroscopy for monitoring the curing of dental composites,” Biomed. Opt. Express 3, 2842–2850 (2012).
[Crossref]

M. Scheller, S. F. Dürrschmidt, M. Stecher, and M. Koch, “Terahertz quasi-time-domain spectroscopy imaging,” Appl. Opt. 50, 1884–1888 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[Crossref]

M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
[Crossref]

Köhler, A.

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

Kondoh, T.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Koppens, F.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Koshelev, A. E.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Kostakis, I.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2, 617–622 (2012).
[Crossref]

Kozub, M.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

Krauspe, P.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Krotkus, A.

A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
[Crossref]

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

Krügener, K.

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Kübler, C.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

Kuroda, R.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Kurter, C.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Kwok, W. K.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Lee, E. S.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Lee, I.-M.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Lee, K.-S.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 ?m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

Lee, W.-H.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Leitenstorfer, A.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Léon, J.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

Lepaul, M.

S. A. F. Sirbu and M. Lepaul, “Coupling 3-d Maxwell’s and Boltzmann’s equations for analyzing a terahertz photoconductive switch,” IEEE Trans. Microwave Theory Tech. 53, 2991–2998 (2005).
[Crossref]

Li, L.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Li, Q.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Linfield, E. H.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Lippert, S.

Liu, J.

J. Dai, J. Liu, and X.-C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

Liu, T.-A.

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
[Crossref]

Llatser, I.

A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
[Crossref]

Lloyd-Hughes, J.

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

E. Castro-Camus, M. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27, 115011 (2012).
[Crossref]

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Lopez, R.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

Luk, T. S.

O. Mitrofanov, I. Brener, T. S. Luk, and J. L. Reno, “Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity,” ACS Photon. 2, 1763–1768 (2015).
[Crossref]

Ma, W. Q.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Madeo, J.

Maemoto, T.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

Makabe, H.

Malevich, V.

V. Malevich and G. Sinitsyn, “Response speed of terahertz photoconductive receiver antennas when excited by femtosecond laser pulses,” J. Appl. Spectrosc. 80, 289–293 (2013).
[Crossref]

Mangeney, J.

Marcinkevicius, S.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

Markelz, A. G.

R. J. Falconer and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” J. Infrared Millimeter Terahertz Waves 33, 973–988 (2012).
[Crossref]

Masnadi-Shirazi, M.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Mathimalar, S.

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

Matsuura, S.

Mayorov, A. S.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Mazur, Y. I.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Merchant, S. K. E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

Minami, H.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Mishima, T. D.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Missous, M.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2, 617–622 (2012).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Mitrofanov, O.

O. Mitrofanov, I. Brener, T. S. Luk, and J. L. Reno, “Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity,” ACS Photon. 2, 1763–1768 (2015).
[Crossref]

Mittendorff, M.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

Mittleman, D. M.

Miyamaru, F.

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

Miyashita, S.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

Modjesch, G.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
[Crossref]

Molis, G.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

Moon, K.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Moreno, E.

E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
[Crossref]

Moskalenko, A.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Mueller, T.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Nakajima, H.

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

Nakajima, M.

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
[Crossref]

Nakashima, S.

Nanal, V.

Neshat, M.

Niehues, G.

Nishisaka, K.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

Nishizawa, S.

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

Norizawa, K.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Nozawa, I.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Nuss, M. C.

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24, 184–197 (1988).
[Crossref]

O’Hara, J. F.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
[Crossref]

Oda, N.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

Ogata, A.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Oh, Y.-J.

Ohshima, S.

Y. Kamo, S. Kitazawa, S. Ohshima, and Y. Hosoda, “Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates,” Jpn. J. Appl. Phys. 53, 032201 (2014).
[Crossref]

Ozaki, T.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116, 043107 (2014).
[Crossref]

Ozyuzer, L.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Pacebutas, V.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

Pahlevaninezhad, H.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Pal, S.

Palacios, T.

A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
[Crossref]

Palomar, M.

E. Castro-Camus, M. Palomar, and A. Covarrubias, “Leaf water dynamics of arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3, 2910 (2013).
[Crossref]

Pan, C.-L.

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
[Crossref]

Pang, Y.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Pantoja, M.

E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
[Crossref]

Park, K. H.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Park, S.-G.

Parkinson, P.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

Peng, K.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Peter, F.

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96–100 (2000).
[Crossref]

Pierz, K.

M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
[Crossref]

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[Crossref]

Pillay, R. G.

Plaxco, K.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Plaxco, K. W.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

Polini, M.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Prabhu, S. S.

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Que, C. T.

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

Ramian, G.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Ramian, G. J.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

Rao, K.

M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Reid, M.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116, 043107 (2014).
[Crossref]

Reno, J. L.

O. Mitrofanov, I. Brener, T. S. Luk, and J. L. Reno, “Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity,” ACS Photon. 2, 1763–1768 (2015).
[Crossref]

Riek, C.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Roehle, H.

Roldn, J.

E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
[Crossref]

Ropagnol, X.

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116, 043107 (2014).
[Crossref]

Ruiz, F.

E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
[Crossref]

Russell, C.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Saeedkia, D.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2, 617–622 (2012).
[Crossref]

Safavi-Naeini, S.

Safian, R.

F. Zangeneh-Nejad, N. Barani, and R. Safian, “Temperature dependence of electromagnetic radiation from terahertz photoconductive antennas,” Microwave Opt. Technol. Lett. 57, 2475–2479 (2015).
[Crossref]

Sakai, K.

Sakakihara, S.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Salamo, G. J.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Sannemann, W.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

Sartorius, B.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

Sasa, S.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

Savvidis, P.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Savvidis, P. G.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

Schäfer, H.

Schell, M.

Scheller, M.

Schmidt, J.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Schneider, H.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express 17, 1571–1576 (2009).
[Crossref]

Schwerdtfeger, M.

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

M. Schwerdtfeger, S. Lippert, M. Koch, A. Berg, S. Katletz, and K. Wiesauer, “Terahertz time-domain spectroscopy for monitoring the curing of dental composites,” Biomed. Opt. Express 3, 2842–2850 (2012).
[Crossref]

Scopatz, A.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Scopatz, A. M.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

Sekine, N.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

Seletskiy, D.

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Shi, L.

W. Hou and L. Shi, “An lt-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60, 1619–1624 (2013).
[Crossref]

Shin, J.-H.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Shiwa, M.

Shore, K.

J. Zhang, Y. Hong, S. Braunstein, and K. Shore, “Terahertz pulse generation and detection with lt-GaAs photoconductive antenna,” in IEE Proceedings of Optoelectronics (IET, 2004), Vol. 151, pp. 98–101.

Siegner, U.

M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
[Crossref]

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[Crossref]

Simmons, A.

M. Kinch, S. Borrello, B. Breazeale, and A. Simmons, “Geometrical enhancement of hgcdte photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
[Crossref]

Singh, A.

Sinitsyn, G.

V. Malevich and G. Sinitsyn, “Response speed of terahertz photoconductive receiver antennas when excited by femtosecond laser pulses,” J. Appl. Spectrosc. 80, 289–293 (2013).
[Crossref]

Sirbu, S. A. F.

S. A. F. Sirbu and M. Lepaul, “Coupling 3-d Maxwell’s and Boltzmann’s equations for analyzing a terahertz photoconductive switch,” IEEE Trans. Microwave Theory Tech. 53, 2991–2998 (2005).
[Crossref]

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

D. H. Auston and P. R. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43, 631–633 (1983).
[Crossref]

Soltani, A.

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Stanze, D.

Stecher, M.

Sudou, T.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

Surdi, H.

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  m femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504 (2005).
[Crossref]

Svidovsky, P.

A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
[Crossref]

Tachiki, M.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Tachiki, T.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Takano, K.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Takayama, K.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

Tan, H. H.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Tani, M.

G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, and M. Tani, “A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis,” Opt. Express 23, 16184–16195 (2015).
[Crossref]

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007).
[Crossref]

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
[Crossref]

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
[Crossref]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 ?m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96–100 (2000).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[Crossref]

Tauser, F.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Taylor, A. J.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
[Crossref]

Teo, K.

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

Tewari, S.

M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Tiedje, T.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

Tignon, J.

Toigawa, T.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Tonouchi, M.

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  m femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504 (2005).
[Crossref]

Toyokawa, H.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Tribe, W. R.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Tsuzuki, S.

Unlu, M.

C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Upadhya, P. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

Vanrudd, J.

Venkatesh, M.

M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Viöl, W.

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

Vitiello, M.

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Voß, N.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Wang, F.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

Wang, N.

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared Millimeter Terahertz Waves 34, 519–528 (2013).
[Crossref]

C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Wang, X.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Wang, Z. M.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Welp, U.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Wiesauer, K.

Winnerl, S.

Wood, C. D.

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Xiao, M.

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Xu, J.

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Xu, M.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

Xu, X. L.

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

Yamaguchi, H.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Yamamoto, K.

G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, and M. Tani, “A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis,” Opt. Express 23, 16184–16195 (2015).
[Crossref]

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

Yamamoto, T.

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Yang, J.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Yang, S.-H.

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4, 575–581 (2014).
[Crossref]

Yano, R.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

Ye, J.

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

Yoneyama, H.

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

Yoshida, Y.

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Zangeneh-Nejad, F.

F. Zangeneh-Nejad, N. Barani, and R. Safian, “Temperature dependence of electromagnetic radiation from terahertz photoconductive antennas,” Microwave Opt. Technol. Lett. 57, 2475–2479 (2015).
[Crossref]

Zhang, J.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

J. Zhang, Y. Hong, S. Braunstein, and K. Shore, “Terahertz pulse generation and detection with lt-GaAs photoconductive antenna,” in IEE Proceedings of Optoelectronics (IET, 2004), Vol. 151, pp. 98–101.

Zhang, X.-C.

J. Dai, J. Liu, and X.-C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 ?m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

Zide, J. M. O.

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
[Crossref]

Zimmermann, B.

ACS Photon. (1)

O. Mitrofanov, I. Brener, T. S. Luk, and J. L. Reno, “Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity,” ACS Photon. 2, 1763–1768 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (1)

A. Arlauskas, P. Svidovsky, K. Bertulis, R. Adomavičius, and A. Krotkus, “GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths,” Appl. Phys. Express 5, 022601 (2012).
[Crossref]

Appl. Phys. Lett. (19)

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, “GaBiAs: a material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88, 201112 (2006).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56  m femtosecond optical pulses,” Appl. Phys. Lett. 86, 163504 (2005).
[Crossref]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  m pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

D. G. Cooke, F. A. Hegmann, Y. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, “Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,” Appl. Phys. Lett. 85, 3839–3841 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[Crossref]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 ?m probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[Crossref]

J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006).
[Crossref]

T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83, 1322–1324 (2003).
[Crossref]

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Knzel, B. Sartorius, T. Gbel, H. Schneider, M. Helm, and S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  m,” Appl. Phys. Lett. 103, 251114 (2013).
[Crossref]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117 (2006).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89, 232102 (2006).
[Crossref]

M. Bieler, G. Hein, K. Pierz, U. Siegner, and M. Koch, “Spatial pattern formation of optically excited carriers in photoconductive switches,” Appl. Phys. Lett. 77, 1002–1004 (2000).
[Crossref]

D. H. Auston and P. R. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43, 631–633 (1983).
[Crossref]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

J. Lloyd-Hughes, M. Failla, J. Ye, S. Jones, K. Teo, and C. Jagadish, “Interfacial and bulk polaron masses in zn1- xmgxo/zno heterostructures examined by terahertz time-domain cyclotron spectroscopy,” Appl. Phys. Lett. 106, 202103 (2015).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100  fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85, 164–166 (2004).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, I. Nozawa, T. Toigawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo, R. Kuroda, and H. Toyokawa, “Radially polarized terahertz waves from a photoconductive antenna with microstructures,” Appl. Phys. Lett. 102, 221118 (2013).
[Crossref]

Astrobiology (1)

J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, and K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003).
[Crossref]

Biomed. Opt. Express (1)

Chem. Phys. Lett. (1)

M. B. Johnston, L. M. Herz, A. L. T. Khan, A. Köhler, A. G. Davies, and E. H. Linfield, “Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy,” Chem. Phys. Lett. 377, 256–262 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24, 184–197 (1988).
[Crossref]

D. H. Auston, “Impulse-response of photoconductors in transmission-lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Dai, J. Liu, and X.-C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron. 17, 183–190 (2011).
[Crossref]

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).
[Crossref]

C. Headley, L. Fu, P. Parkinson, X. L. Xu, J. Lloyd-Hughes, C. Jagadish, and M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation,” IEEE J. Sel. Top. Quantum Electron. 17, 17–21 (2011).
[Crossref]

IEEE Trans. Electron Devices (1)

W. Hou and L. Shi, “An lt-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability,” IEEE Trans. Electron Devices 60, 1619–1624 (2013).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

S. A. F. Sirbu and M. Lepaul, “Coupling 3-d Maxwell’s and Boltzmann’s equations for analyzing a terahertz photoconductive switch,” IEEE Trans. Microwave Theory Tech. 53, 2991–2998 (2005).
[Crossref]

IEEE Trans. Nanotechnol. (1)

A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, “Use of terahertz photoconductive sources to characterize tunable graphene rf plasmonic antennas,” IEEE Trans. Nanotechnol. 14, 390–396 (2015).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (3)

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55 pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2, 617–622 (2012).
[Crossref]

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5, 391–397 (2015).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4, 575–581 (2014).
[Crossref]

Infrared Phys. (2)

M. Kinch, S. Borrello, B. Breazeale, and A. Simmons, “Geometrical enhancement of hgcdte photoconductive detectors,” Infrared Phys. 17, 137–145 (1977).
[Crossref]

K. P. Cheung and D. H. Auston, “A novel technique for measuring far-infrared absorption and dispersion,” Infrared Phys. 26, 23–27 (1986).
[Crossref]

J. Appl. Phys. (3)

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104, 053113 (2008).
[Crossref]

X. Ropagnol, M. Bouvier, M. Reid, and T. Ozaki, “Improvement in thermal barriers to intense terahertz generation from photoconductive antennas,” J. Appl. Phys. 116, 043107 (2014).
[Crossref]

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, and T. Hattori, “Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity,” J. Appl. Phys. 97, 103103 (2005).
[Crossref]

J. Appl. Spectrosc. (1)

V. Malevich and G. Sinitsyn, “Response speed of terahertz photoconductive receiver antennas when excited by femtosecond laser pulses,” J. Appl. Spectrosc. 80, 289–293 (2013).
[Crossref]

J. Eur. Opt. Soc. (1)

K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudou, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. 3, 08027 (2008).
[Crossref]

J. Infrared Millimeter Terahertz Waves (9)

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of leaf water content from terahertz time-domain spectroscopic data,” J. Infrared Millimeter Terahertz Waves 34, 316–323 (2013).
[Crossref]

B. Born and M. Havenith, “Terahertz dance of proteins and sugars with water,” J. Infrared Millimeter Terahertz Waves 30, 1245–1254 (2009).

R. J. Falconer and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” J. Infrared Millimeter Terahertz Waves 33, 973–988 (2012).
[Crossref]

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared Millimeter Terahertz Waves 34, 519–528 (2013).
[Crossref]

M. Tani, K. Yamamoto, E. S. Estacio, C. T. Que, H. Nakajima, M. Hibi, F. Miyamaru, S. Nishizawa, and M. Hangyo, “Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices,” J. Infrared Millimeter Terahertz Waves 33, 393–404 (2012).
[Crossref]

E. Moreno, M. Pantoja, F. Ruiz, J. Roldn, and S. Garca, “On the numerical modeling of terahertz photoconductive antennas,” J. Infrared Millimeter Terahertz Waves 35, 432–444 (2014).
[Crossref]

M. Kozub, K. Nishisaka, T. Maemoto, S. Sasa, K. Takayama, and M. Tonouchi, “Reflection layer mediated enhancement of terahertz radiation utilizing heavily-doped InAs thin films,” J. Infrared Millimeter Terahertz Waves 36, 423–429 (2015).
[Crossref]

E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Millimeter Terahertz Waves 33, 418–430 (2012).
[Crossref]

S. Corzo-Garcia, M. Alfaro, and E. Castro-Camus, “Transit time enhanced bandwidth in nanostructured terahertz emitters,” J. Infrared Millimeter Terahertz Waves 35, 987–992 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96–100 (2000).
[Crossref]

Y. Kamo, S. Kitazawa, S. Ohshima, and Y. Hosoda, “Highly efficient photoconductive antennas using optimum low-temperature-grown GaAs layers and si substrates,” Jpn. J. Appl. Phys. 53, 032201 (2014).
[Crossref]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Microwave Opt. Technol. Lett. (1)

F. Zangeneh-Nejad, N. Barani, and R. Safian, “Temperature dependence of electromagnetic radiation from terahertz photoconductive antennas,” Microwave Opt. Technol. Lett. 57, 2475–2479 (2015).
[Crossref]

Nano Lett. (4)

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15, 8306–8310 (2015), PMID: 26575274.
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12, 6255–6259 (2012).
[Crossref]

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2015), PMID: 25490548.
[Crossref]

N. Hunter, A. S. Mayorov, C. D. Wood, C. Russell, L. Li, E. H. Linfield, A. G. Davies, and J. E. Cunningham, “On-chip picosecond pulse detection and generation using graphene photoconductive switches,” Nano Lett. 15, 1591–1596 (2015), PMID: 25710079.
[Crossref]

Nat. Commun. (1)

C. Berry, N. Wang, M. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Nat. Nanotechnol. (1)

F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Nature (1)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[Crossref]

Opt. Express (12)

P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, and K. M. Dani, “20  THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas,” Opt. Express 22, 26358–26364 (2014).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, S. Mathimalar, V. Nanal, R. G. Pillay, and G. Döhler, “Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection,” Opt. Express 23, 6656–6661 (2015).
[Crossref]

R. J. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6  THz bandwidth and 90db dynamic range,” Opt. Express 22, 19411–19422 (2014).
[Crossref]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A hybrid analysis method for plasmonic enhanced terahertz photomixer sources,” Opt. Express 21, 11115–11124 (2013).
[Crossref]

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20, 25530–25535 (2012).
[Crossref]

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18, 9251–9257 (2010).
[Crossref]

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
[Crossref]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express 17, 1571–1576 (2009).
[Crossref]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007).
[Crossref]

G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, and M. Tani, “A matter of symmetry: terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis,” Opt. Express 23, 16184–16195 (2015).
[Crossref]

A. Hussain and S. R. Andrews, “Ultrabroadband polarization analysis of terahertz pulses,” Opt. Express 16, 7251–7257 (2008).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

M. Venkatesh, K. Rao, T. Abhilash, S. Tewari, and A. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Philos. Trans. R. Soc. A (1)

J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philos. Trans. R. Soc. A 362, 199–213 (2004).
[Crossref]

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[Crossref]

Phys. Rev. B (2)

J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301 (2005).
[Crossref]

Phys. Rev. Lett. (1)

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, J. R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in vo2,” Phys. Rev. Lett. 99, 116401 (2007).
[Crossref]

Phys. Status Solidi B (1)

M. Koch, M. Bieler, G. Hein, K. Pierz, and U. Siegner, “Photoconductive switches: the role of spatial effects in carrier dynamics,” Phys. Status Solidi B 221, 429–433 (2000).
[Crossref]

Sci. Rep. (3)

E. Castro-Camus, M. Palomar, and A. Covarrubias, “Leaf water dynamics of arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy,” Sci. Rep. 3, 2910 (2013).
[Crossref]

K. Krügener, M. Schwerdtfeger, S. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with t-ray technology,” Sci. Rep. 5, 14842 (2015).
[Crossref]

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref]

Science (2)

C. Riek, D. Seletskiy, A. Moskalenko, J. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer, “Direct sampling of electric-field vacuum fluctuations,” Science 350, 420–423 (2015).
[Crossref]

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W. K. Kwok, and U. Welp, “Emission of coherent THz radiation from superconductors,” Science 318, 1291–1293 (2007).
[Crossref]

Semicond. Sci. Technol. (2)

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20, S246 (2005).
[Crossref]

E. Castro-Camus, M. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27, 115011 (2012).
[Crossref]

Solid State Commun. (1)

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

Other (2)

J. Zhang, Y. Hong, S. Braunstein, and K. Shore, “Terahertz pulse generation and detection with lt-GaAs photoconductive antenna,” in IEE Proceedings of Optoelectronics (IET, 2004), Vol. 151, pp. 98–101.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” in Optical Technologies for Industrial, Environmental, and Biological Sensing (International Society for Optics and Photonics, 2004), pp. 19–26.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Typical THz-TDS setup. The photoconductive emitter and detector are shown.

Fig. 2.
Fig. 2.

Typical THz transient produced and detected by photoconductive switches (left) and its spectrum (right).

Fig. 3.
Fig. 3.

Resistance and lifetime measurements for a bow-tie antenna with a 5 μm photoconductive gap. Regions (I) and (II) are marked according to the two-stage increase in the resistivity at intermediate anneal temperatures and correspond to expected optimum requirements for THz receivers and emitters, respectively. Reproduced with permission from [28], copyright 2003, American Institute of Physics.

Fig. 4.
Fig. 4.

Schematic of a single nanowire photoconductive detector geometry and optical arrangement used in its characterization. The upper inset shows a THz transient measured with this device. The lower inset shows a SEM image of the device. Reproduced with permission from [56], copyright 2014, American Chemical Society.

Fig. 5.
Fig. 5.

(a) Normalized luminescence distribution without bias field minus normalized luminescence distributions with bias field from a photoconductive emitter. Dark tones mark a strong field-induced reduction of the luminescence, white: enhancement of the normalized luminescence. Reproduced with permission from [62], copyright 2000, American Institute of Physics. (b) Charge distribution from a Monte Carlo simulation similar to the one presented in [65].

Fig. 6.
Fig. 6.

(a) Dipole, (b) bow-tie, and (c) strip-line photoconductive antenna geometries are shown.

Metrics