Abstract

We present integrated-optic building blocks and functional photonic devices based on amorphous silicon-on-insulator technology. Efficient deep-etched fiber-to-chip grating couplers, low-loss single-mode photonic wire waveguides, and compact power splitters are presented. Based on the sub-μm photonic wires, 2×2 Mach–Zehnder interferometers and add/drop microring resonators (MRRs) with low device footprints and high finesse up to 200 were realized and studied. Compact polarization rotators and splitters with 10  dB polarization extinction ratio were fabricated for the polarization management on-chip. The tuning and trimming capabilities of the material platform are demonstrated with efficient microheaters and a permanent device trimming method, which enabled the realization of energy-efficient photonic circuits. Wavelength multiplexers in the form of cascaded filter banks and 4×4 routers based on MRR switches are presented. Fabrication imperfections were analyzed and permanently corrected by an accurate laser-trimming method, thus enabling eight-channel multiplexers with record low metrics of sub-mW static power consumption and 1°C temperature overhead. The high quality of the functional devices, the high tuning efficiency, and the excellent trimming capabilities demonstrate the potential to realize low-cost, densely integrated, and ultralow-power 3D-stacked photonic circuits on top of CMOS microelectronics.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Hydrogenated amorphous silicon photonic device trimming by UV-irradiation

Timo Lipka, Melanie Kiepsch, Hoc Khiem Trieu, and Jörg Müller
Opt. Express 22(10) 12122-12132 (2014)

Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI

Timo Lipka, Lennart Moldenhauer, Jörg Müller, and Hoc Khiem Trieu
Opt. Express 23(15) 20075-20088 (2015)

Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit

J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets
Opt. Express 15(11) 6744-6749 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. Cocorullo, F. G. D. Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21, 2002–2004 (1996).
    [Crossref]
  2. A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
    [Crossref]
  3. F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550  nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19, 2941–2951 (2011).
    [Crossref]
  4. F. Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron Devices 60, 1495–1505 (2013).
    [Crossref]
  5. Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon ghz modulator,” Opt. Express 21, 26688–26692 (2013).
    [Crossref]
  6. H. Byun, J. Bok, K. Cho, K. Cho, H. Choi, J. Choi, S. Choi, S. Han, S. Hong, S. Hyun, T. J. Jeong, H.-C. Ji, I.-S. Joe, B. Kim, D. Kim, J. Kim, J.-K. Kim, K. Kim, S.-G. Kim, D. Kong, B. Kuh, H. Kwon, B. Lee, H. Lee, K. Lee, S. Lee, K. Na, J. Nam, A. Nejadmalayeri, Y. Park, S. Parmar, J. Pyo, D. Shin, J. Shin, Y.-H. Shin, S.-D. Suh, H. Yoon, Y. Park, J. Choi, K.-H. Ha, and G. Jeong, “Bulk-si photonics technology for dram interface [invited],” Photon. Res. 2, A25–A33 (2014).
    [Crossref]
  7. S. Rao, G. Coppola, C. Summonte, and F. G. D. Corte, “Progress towards a high-performing a-si:h-based electro-optic modulator,” J. Opt. 16, 055501 (2014).
    [Crossref]
  8. C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
    [Crossref]
  9. L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-si:h)-linbo3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
    [Crossref]
  10. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
    [Crossref]
  11. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
    [Crossref]
  12. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
    [Crossref]
  13. J. Müller, M. Mahnke, G. Schoer, and S. Wiechmann, “Inorganic materials integrated optics,” AIP Conf. Proc. 709, 268–289 (2004).
    [Crossref]
  14. M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer si/sio2/sin platform for 3d integration of optical functionalities,” Opt. Express 22, 16767–16777 (2014).
    [Crossref]
  15. S. Zhu and G.-Q. Lo, “Vertically-stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightwave Technol. 34, 386–392 (2015).
    [Crossref]
  16. T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on tio2-cladded amorphous-soi,” Opt. Express 23, 20075–20088 (2015).
    [Crossref]
  17. T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
    [Crossref]
  18. H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
    [Crossref]
  19. D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
    [Crossref]
  20. C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
    [Crossref]
  21. J. Cheng and N. Yan, “Three-step lithography to the fabrication of vertically coupled micro-ring resonators in amorphous silicon-on-insulator,” Chin. Opt. Lett. 13, 082201 (2015).
    [Crossref]
  22. W. Heni, C. Haffner, B. Baeuerle, Y. Fedoryshyn, A. Josten, D. Hillerkuss, J. Niegemann, A. Melikyan, M. Kohl, D. Elder, L. Dalton, C. Hafner, and J. Leuthold, “108  Gbit/s plasmonic Mach-Zehnder modulator with 70-ghz electrical bandwidth,” J. Lightwave Technol. 34, 393–400 (2016).
    [Crossref]
  23. T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-si:h optical thin films for photonic applications,” J. Eur. Opt. Soc. 7, 12033 (2012).
    [Crossref]
  24. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized soi waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19, 3592–3598 (2011).
    [Crossref]
  25. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
    [Crossref]
  26. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
    [Crossref]
  27. G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
    [Crossref]
  28. L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for si-photonics: reaching the -1db coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
    [Crossref]
  29. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
    [Crossref]
  30. G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
    [Crossref]
  31. M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [Crossref]
  32. K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
    [Crossref]
  33. L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20, 5789–5801 (2012).
    [Crossref]
  34. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: Theory and experiment,” IEEE J. Quantum Electron. 46, 1158–1169 (2010).
    [Crossref]
  35. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  36. T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
    [Crossref]
  37. T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators,” IEEE Photon. J. 7, 1–11 (2015).
    [Crossref]
  38. M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.
  39. Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
    [Crossref]
  40. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [Crossref]
  41. M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.
  42. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
    [Crossref]
  43. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
    [Crossref]
  44. J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
    [Crossref]
  45. Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
    [Crossref]
  46. J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
    [Crossref]
  47. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [Crossref]
  48. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [invited],” Photon. Res. 3, B28–B46 (2015).
    [Crossref]
  49. T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by uv-irradiation,” Opt. Express 22, 12122–12132 (2014).
    [Crossref]
  50. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
    [Crossref]
  51. M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30, 448–457 (2012).
    [Crossref]
  52. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [invited],” Photon. Res. 3, B10–B27 (2015).
    [Crossref]
  53. X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
    [Crossref]
  54. T. Lipka, J. Müller, and H. K. Trieu, “Systematic non-uniformity analysis of amorphous silicon-on-insulator photonic microring resonators,” J. Lightwave Technol. (2016), doi: 10.1109/JLT.2016.2549738.
    [Crossref]
  55. M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
    [Crossref]

2016 (2)

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

W. Heni, C. Haffner, B. Baeuerle, Y. Fedoryshyn, A. Josten, D. Hillerkuss, J. Niegemann, A. Melikyan, M. Kohl, D. Elder, L. Dalton, C. Hafner, and J. Leuthold, “108  Gbit/s plasmonic Mach-Zehnder modulator with 70-ghz electrical bandwidth,” J. Lightwave Technol. 34, 393–400 (2016).
[Crossref]

2015 (8)

J. Cheng and N. Yan, “Three-step lithography to the fabrication of vertically coupled micro-ring resonators in amorphous silicon-on-insulator,” Chin. Opt. Lett. 13, 082201 (2015).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on tio2-cladded amorphous-soi,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [invited],” Photon. Res. 3, B10–B27 (2015).
[Crossref]

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [invited],” Photon. Res. 3, B28–B46 (2015).
[Crossref]

S. Zhu and G.-Q. Lo, “Vertically-stacked multilayer photonics on bulk silicon toward three-dimensional integration,” J. Lightwave Technol. 34, 386–392 (2015).
[Crossref]

C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
[Crossref]

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

2014 (10)

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
[Crossref]

S. Rao, G. Coppola, C. Summonte, and F. G. D. Corte, “Progress towards a high-performing a-si:h-based electro-optic modulator,” J. Opt. 16, 055501 (2014).
[Crossref]

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-si:h)-linbo3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

H. Byun, J. Bok, K. Cho, K. Cho, H. Choi, J. Choi, S. Choi, S. Han, S. Hong, S. Hyun, T. J. Jeong, H.-C. Ji, I.-S. Joe, B. Kim, D. Kim, J. Kim, J.-K. Kim, K. Kim, S.-G. Kim, D. Kong, B. Kuh, H. Kwon, B. Lee, H. Lee, K. Lee, S. Lee, K. Na, J. Nam, A. Nejadmalayeri, Y. Park, S. Parmar, J. Pyo, D. Shin, J. Shin, Y.-H. Shin, S.-D. Suh, H. Yoon, Y. Park, J. Choi, K.-H. Ha, and G. Jeong, “Bulk-si photonics technology for dram interface [invited],” Photon. Res. 2, A25–A33 (2014).
[Crossref]

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by uv-irradiation,” Opt. Express 22, 12122–12132 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for si-photonics: reaching the -1db coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer si/sio2/sin platform for 3d integration of optical functionalities,” Opt. Express 22, 16767–16777 (2014).
[Crossref]

2013 (4)

Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon ghz modulator,” Opt. Express 21, 26688–26692 (2013).
[Crossref]

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
[Crossref]

F. Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron Devices 60, 1495–1505 (2013).
[Crossref]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
[Crossref]

2012 (7)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30, 448–457 (2012).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20, 5789–5801 (2012).
[Crossref]

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
[Crossref]

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-si:h optical thin films for photonic applications,” J. Eur. Opt. Soc. 7, 12033 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

2011 (6)

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550  nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19, 2941–2951 (2011).
[Crossref]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized soi waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19, 3592–3598 (2011).
[Crossref]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
[Crossref]

2010 (7)

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
[Crossref]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref]

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: Theory and experiment,” IEEE J. Quantum Electron. 46, 1158–1169 (2010).
[Crossref]

2009 (1)

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

2008 (2)

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

2005 (1)

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

2004 (1)

J. Müller, M. Mahnke, G. Schoer, and S. Wiechmann, “Inorganic materials integrated optics,” AIP Conf. Proc. 709, 268–289 (2004).
[Crossref]

2001 (1)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

1996 (1)

Aboketaf, A.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-si:h)-linbo3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Absil, P.

Adibi, A.

Ahn, C. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Ahn, J.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Amemiya, T.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Amthor, J.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-si:h optical thin films for photonic applications,” J. Eur. Opt. Soc. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
[Crossref]

Andreani, L. C.

Antelius, M.

Arai, S.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Atabaki, A. H.

Atsumi, Y.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

Baeuerle, B.

Barwicz, T.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Beausoleil, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Bergman, K.

Berroth, M.

Biberman, A.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

Binkert, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

Bok, J.

Borg, M.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Bowers, J. E.

Breslin, C. M.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Bruley, J.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Burghartz, J.

Butschke, J.

Byun, H.

Cao, L.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-si:h)-linbo3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Carroll, L.

Cheben, P.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Chen, L.

Chen, X.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
[Crossref]

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
[Crossref]

Cheng, J.

Cho, K.

Choi, H.

Choi, J.

Choi, S.

Choi, W. J.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Chu, Y.-T.

C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Cocorullo, G.

Coppola, G.

S. Rao, G. Coppola, C. Summonte, and F. G. D. Corte, “Progress towards a high-performing a-si:h-based electro-optic modulator,” J. Opt. 16, 055501 (2014).
[Crossref]

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550  nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19, 2941–2951 (2011).
[Crossref]

Corte, F.

F. Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron Devices 60, 1495–1505 (2013).
[Crossref]

Corte, F. G. D.

Cristiani, I.

Cui, J.

Cunningham, J. E.

Cutaia, D.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Dai, D.

Dalton, L.

Darmawan, S.

Davis, A.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De La Rue, R.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Della Corte, F. G.

Deng, Q.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Eftekhar, A. A.

Elder, D.

Elshaari, A. W.

Fan, G.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Fang, Q.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

Fattal, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Fedoryshyn, Y.

Fiorentino, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Furuya, K.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

Gerace, D.

Geum, D.-M.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Gignac, L.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Gnan, M.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Gylfason, K. B.

Ha, K.-H.

Haffner, C.

Hafner, C.

Halir, R.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

Han, B.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Han, S.

Harke, A.

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Hasama, T.

Haus, H. A.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Heni, W.

Hillerkuss, D.

Hilterhaus, L.

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
[Crossref]

Hong, S.

Horn, O.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-si:h optical thin films for photonic applications,” J. Eur. Opt. Soc. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
[Crossref]

Hsieh, C.-H.

C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
[Crossref]

Hu, C.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Huang, M.-J.

C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
[Crossref]

Hyun, S.

Ippen, E. P.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Ishikawa, H.

Ito, H.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Itoga, E.

Janz, S.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Jeong, G.

Jeong, T. J.

Ji, H.-C.

Jia, L.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

Joe, I.-S.

Josten, A.

Jouppi, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Kamei, T.

Kang, J.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Kawashima, H.

Kiepsch, M.

Kim, B.

Kim, C. Z.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Kim, D.

Kim, J.

Kim, J.-K.

Kim, K.

Kim, S.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Kim, S.-G.

Kintaka, K.

Koguchi, T.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Kohl, M.

Kong, D.

Krause, M.

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Krishnamoorthy, A. V.

Kuh, B.

Kumah, D.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Kunze, A.

Kuo, C.-M.

C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
[Crossref]

Kwon, H.

Lee, B.

Lee, B. G.

Lee, H.

Lee, K.

Lee, S.

Lee, Y. H. D.

Lei, L.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Leou, K.-C.

C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
[Crossref]

Lepage, G.

Letzkus, F.

Leuthold, J.

Li, G.

Li, H.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: Theory and experiment,” IEEE J. Quantum Electron. 46, 1158–1169 (2010).
[Crossref]

Li, X.

Li, Y.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [invited],” Photon. Res. 3, B10–B27 (2015).
[Crossref]

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Li, Z.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
[Crossref]

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
[Crossref]

Lim, J. Y.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Lipka, T.

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on tio2-cladded amorphous-soi,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by uv-irradiation,” Opt. Express 22, 12122–12132 (2014).
[Crossref]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
[Crossref]

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-si:h optical thin films for photonic applications,” J. Eur. Opt. Soc. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
[Crossref]

T. Lipka, J. Müller, and H. K. Trieu, “Systematic non-uniformity analysis of amorphous silicon-on-insulator photonic microring resonators,” J. Lightwave Technol. (2016), doi: 10.1109/JLT.2016.2549738.
[Crossref]

Lipson, M.

Liu, Y.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

Lo, G.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

Lo, G.-Q.

Luck, D.

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.

Luo, X.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

Luo, Y.

Macintyre, D.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Mahnke, M.

J. Müller, M. Mahnke, G. Schoer, and S. Wiechmann, “Inorganic materials integrated optics,” AIP Conf. Proc. 709, 268–289 (2004).
[Crossref]

McLaren, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Mekis, A.

Melikyan, A.

Mickelson, A.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
[Crossref]

Mickelson, A. R.

Minarini, C.

Mohamed, M.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
[Crossref]

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
[Crossref]

Moldenhauer, L.

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on tio2-cladded amorphous-soi,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

Mori, M.

Moselund, K.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Müller, J.

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on tio2-cladded amorphous-soi,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by uv-irradiation,” Opt. Express 22, 12122–12132 (2014).
[Crossref]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
[Crossref]

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-si:h optical thin films for photonic applications,” J. Eur. Opt. Soc. 7, 12033 (2012).
[Crossref]

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
[Crossref]

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

J. Müller, M. Mahnke, G. Schoer, and S. Wiechmann, “Inorganic materials integrated optics,” AIP Conf. Proc. 709, 268–289 (2004).
[Crossref]

T. Lipka, J. Müller, and H. K. Trieu, “Systematic non-uniformity analysis of amorphous silicon-on-insulator photonic microring resonators,” J. Lightwave Technol. (2016), doi: 10.1109/JLT.2016.2549738.
[Crossref]

Na, K.

Nakanishi, K.

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

Nam, J.

Namiki, S.

Narayanan, K.

Nejadmalayeri, A.

Ngai, J. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Niegemann, J.

Nielson, G.

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.

Nishiyama, N.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Ogasawara, T.

Okano, M.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
[Crossref]

Okumura, T.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Omoda, E.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

Orobtchouk, R.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Osabe, R.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Park, M.-S.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Park, Y.

Parmar, S.

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Pinguet, T.

Poon, A. W.

Pourabolghasem, R.

Preble, S.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-si:h)-linbo3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Preble, S. F.

Pyo, J.

Qi, M.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Raj, K.

Rakich, P. T.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Rao, S.

S. Rao, G. Coppola, C. Summonte, and F. G. D. Corte, “Progress towards a high-performing a-si:h-based electro-optic modulator,” J. Opt. 16, 055501 (2014).
[Crossref]

F. Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron Devices 60, 1495–1505 (2013).
[Crossref]

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550  nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19, 2941–2951 (2011).
[Crossref]

Reiner, J. W.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Rendina, I.

Riel, H.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Roelkens, G.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

Rubino, A.

Sakakibara, Y.

Santori, C.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Savov, A.

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
[Crossref]

Schmid, H.

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

Schmid, J.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Schoer, G.

J. Müller, M. Mahnke, G. Schoer, and S. Wiechmann, “Inorganic materials integrated optics,” AIP Conf. Proc. 709, 268–289 (2004).
[Crossref]

Schreiber, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Selvaraja, S.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Shah Hosseini, E.

Shang, L.

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
[Crossref]

X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
[Crossref]

Sherwood-Droz, N.

Shin, D.

Shin, J.

Shin, Y.-H.

Shindo, T.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Shoji, Y.

Shubin, I.

Smith, H. I.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Socci, L.

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Sodagar, M.

Sohlström, H.

Soltani, M.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: Theory and experiment,” IEEE J. Quantum Electron. 46, 1158–1169 (2010).
[Crossref]

Song, J.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

Song, J. D.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Sorel, M.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Spillane, S.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Suda, S.

Suh, S.-D.

Summonte, C.

S. Rao, G. Coppola, C. Summonte, and F. G. D. Corte, “Progress towards a high-performing a-si:h-based electro-optic modulator,” J. Opt. 16, 055501 (2014).
[Crossref]

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550  nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19, 2941–2951 (2011).
[Crossref]

Suzuki, M.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

Takahashi, D.

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

Takei, R.

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
[Crossref]

Tang, H. X.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Tanizawa, K.

Taubenblatt, M.

Terzini, E.

Thacker, H.

Thompson, M. O.

Thoms, S.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Tjahjana, L.

Tobing, L. Y. M.

Trieu, H. K.

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on tio2-cladded amorphous-soi,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by uv-irradiation,” Opt. Express 22, 12122–12132 (2014).
[Crossref]

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
[Crossref]

T. Lipka, J. Müller, and H. K. Trieu, “Systematic non-uniformity analysis of amorphous silicon-on-insulator photonic microring resonators,” J. Lightwave Technol. (2016), doi: 10.1109/JLT.2016.2549738.
[Crossref]

Trotter, D.

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.

Trotter, D. C.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vantrease, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Verheyen, P.

Vermeulen, D.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

Vogel, W.

Wahn, L.

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
[Crossref]

Walker, F. J.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Wang, H.

Wang, Q.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Wang, Z.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-si:h)-linbo3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Watts, M.

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.

Watts, M. R.

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

Wiechmann, S.

J. Müller, M. Mahnke, G. Schoer, and S. Wiechmann, “Inorganic materials integrated optics,” AIP Conf. Proc. 709, 268–289 (2004).
[Crossref]

Xiong, C.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Xiong, Y.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Xu, D.-X.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Xu, L.

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

Xu, Q.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Yan, N.

Yang, H.-D.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Yao, J.

Ye, W.

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Yegnanarayanan, S.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: Theory and experiment,” IEEE J. Quantum Electron. 46, 1158–1169 (2010).
[Crossref]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
[Crossref]

Yin, B.

Yoon, E.

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Yoon, H.

Young, R.

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.

Yu, M.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

Zaoui, W. S.

Zhang, D. H.

Zhang, L.

Zhang, Y.

Zheng, X.

Zhou, Z.

Zhu, S.

Zortman, W.

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.

Zortman, W. A.

AIP Conf. Proc. (1)

J. Müller, M. Mahnke, G. Schoer, and S. Wiechmann, “Inorganic materials integrated optics,” AIP Conf. Proc. 709, 268–289 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95, 989–997 (2009).
[Crossref]

Appl. Phys. Lett. (2)

H. Schmid, M. Borg, K. Moselund, L. Gignac, C. M. Breslin, J. Bruley, D. Cutaia, and H. Riel, “Template-assisted selective epitaxy of IIIV nanoscale devices for co-planar heterogeneous integration with Si,” Appl. Phys. Lett. 106, 233101 (2015).
[Crossref]

K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, and Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100, 251108 (2012).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (2)

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: Theory and experiment,” IEEE J. Quantum Electron. 46, 1158–1169 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Shindo, T. Okumura, H. Ito, T. Koguchi, D. Takahashi, Y. Atsumi, J. Kang, R. Osabe, T. Amemiya, N. Nishiyama, and S. Arai, “Lateral-current-injection distributed feedback laser with surface grating structure,” IEEE J. Sel. Top. Quantum Electron. 17, 1175–1182 (2011).
[Crossref]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 571–580 (2011).
[Crossref]

IEEE Photon. J. (2)

Y. Xiong, D.-X. Xu, J. Schmid, P. Cheben, S. Janz, and W. Ye, “Robust silicon waveguide polarization rotator with an amorphous silicon overlayer,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Energy-efficient wavelength multiplexers based on hydrogenated amorphous silicon resonators,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Amthor, O. Horn, T. Lipka, A. Savov, and J. Müller, “Fabrication of freestanding sio2-membrane systems for thermo-optic adjusting of soi photonic wires,” IEEE Photon. Technol. Lett. 23, 1142–1144 (2011).
[Crossref]

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with nisi heater,” IEEE Photon. Technol. Lett. 24, 350–352 (2012).
[Crossref]

IEEE Trans. Electron Devices (1)

F. Corte and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Trans. Electron Devices 60, 1495–1505 (2013).
[Crossref]

IEEE Trans. Very Large Scale Integr. Syst. (1)

M. Mohamed, Z. Li, X. Chen, L. Shang, and A. Mickelson, “Reliability-aware design flow for silicon photonics on-chip interconnect,” IEEE Trans. Very Large Scale Integr. Syst. 22, 1763–1776 (2014).
[Crossref]

J. Eur. Opt. Soc. (1)

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-si:h optical thin films for photonic applications,” J. Eur. Opt. Soc. 7, 12033 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Nanophoton. (1)

T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, and J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7, 073793 (2013).
[Crossref]

J. Opt. (1)

S. Rao, G. Coppola, C. Summonte, and F. G. D. Corte, “Progress towards a high-performing a-si:h-based electro-optic modulator,” J. Opt. 16, 055501 (2014).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: Ferroelectric batio3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Opt. Commun. (1)

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-si:h)-linbo3 electro-optic modulator,” Opt. Commun. 330, 40–44 (2014).
[Crossref]

Opt. Express (17)

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
[Crossref]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
[Crossref]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
[Crossref]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[Crossref]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
[Crossref]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010).
[Crossref]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[Crossref]

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550  nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19, 2941–2951 (2011).
[Crossref]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized soi waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19, 3592–3598 (2011).
[Crossref]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref]

Y. H. D. Lee, M. O. Thompson, and M. Lipson, “Deposited low temperature silicon ghz modulator,” Opt. Express 21, 26688–26692 (2013).
[Crossref]

T. Lipka, L. Moldenhauer, J. Müller, and H. K. Trieu, “Athermal and wavelength-trimmable photonic filters based on tio2-cladded amorphous-soi,” Opt. Express 23, 20075–20088 (2015).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, S. Darmawan, and D. H. Zhang, “Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices,” Opt. Express 20, 5789–5801 (2012).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref]

T. Lipka, M. Kiepsch, H. K. Trieu, and J. Müller, “Hydrogenated amorphous silicon photonic device trimming by uv-irradiation,” Opt. Express 22, 12122–12132 (2014).
[Crossref]

L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimizing polarization-diversity couplers for si-photonics: reaching the -1db coupling efficiency threshold,” Opt. Express 22, 14769–14781 (2014).
[Crossref]

M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer si/sio2/sin platform for 3d integration of optical functionalities,” Opt. Express 22, 16767–16777 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and vcsels using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001).
[Crossref]

Photon. Res. (3)

Prog. Electromagn. Res. (1)

C.-H. Hsieh, Y.-T. Chu, M.-J. Huang, C.-M. Kuo, and K.-C. Leou, “Design of a low loss silicon based hybrid dielectric loaded plasmonic waveguide and a compact high performance optical resonator,” Prog. Electromagn. Res. 42, 135–144 (2015).
[Crossref]

Sci. Rep. (1)

D.-M. Geum, M.-S. Park, J. Y. Lim, H.-D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6, 20610 (2016).
[Crossref]

Other (4)

G. Fan, R. Orobtchouk, B. Han, Y. Li, C. Hu, L. Lei, H. Li, L. Xu, and Q. Wang, “Optical waveguides on three material platforms of silicon-on-insulator, amorphous silicon an d silicon nitride,” IEEE J. Sel. Top. Quantum Electron. (2015), doi: 10.1109/JSTQE.2015.2494681.
[Crossref]

M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, and H. A. Haus, “Towards integrated polarization diversity: Design, fabrication and characterization of integrated polarization splitters and rotators,” in Optical Fiber Communications Conference Technical Digest (March6, 2005), paper PDP11.

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland (2009), paper CPDB10.

T. Lipka, J. Müller, and H. K. Trieu, “Systematic non-uniformity analysis of amorphous silicon-on-insulator photonic microring resonators,” J. Lightwave Technol. (2016), doi: 10.1109/JLT.2016.2549738.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Calculated coupling efficiencies and 3 dB bandwidth of shallow-etch (SE) GCs with/without DBR and of the AGC.
Fig. 2.
Fig. 2. Measured coupling efficiency of the AGCs with a micrograph and simulation inset.
Fig. 3.
Fig. 3. Propagation loss measurements for the TE0 mode. Inset: Mask layout of the meandered waveguides indicating a writing field.
Fig. 4.
Fig. 4. Power splitting of DCs for different coupler lengths with schematic (inset).
Fig. 5.
Fig. 5. Bar and cross-port signals of an MZI.
Fig. 6.
Fig. 6. Spectral characterization of add/drop microring filters: Microring with (a) 5 μm radius and (b) 10 μm radius.
Fig. 7.
Fig. 7. Q-factor and finesse of 5 and 10 μm radius add/drop filters measured for different coupling gaps.
Fig. 8.
Fig. 8. (a) Even and odd supermodes of the asymmetric DC with electric field inset. (b) Mode indices of TE0, TM0, and TE1 versus waveguide widths illustrating the PSR principle.
Fig. 9.
Fig. 9. (a) Measurement setup and micrograph of the PSR. (b) PSR measurements with arbitrary input polarization and polarizer cube set to TE (x axis) and TM (y axis).
Fig. 10.
Fig. 10. Measured tuning efficiency of microheaters placed on top of a 10 μm resonator with microscope picture (inset).
Fig. 11.
Fig. 11. Resonance shift due to modifications of the effective mode index. Resonance trimming of an uncladded 10 μm MRR blueshifted in 1 nm increments.
Fig. 12.
Fig. 12. Racetrack-based multiplexer TOE aligned to the 100 GHz DWDM grid with micrograph inset.
Fig. 13.
Fig. 13. Through- and drop-port spectra of a wavelength-trimmed eight-channel multiplexer with micrograph.
Fig. 14.
Fig. 14. (a) Spectral disorder of as-fabricated and trimmed OADMs. (b) Static power consumption for the eight-channel assignments of as-fabricated and trimmed OADMs.
Fig. 15.
Fig. 15. (a) Micrographs of a 4×4 photonic router and a MRR-switch. (b) Static measurements with inputs (I14) and output ports (O14) from top to bottom: Row 1: I1O13. Row 2: I2O2,3,4. Row 3: I3O1,2,4. Row 4: I4O24.

Tables (2)

Tables Icon

Table 1. Nonuniform AGC Parameters

Tables Icon

Table 2. Linear Loss Comparison of a-SOI/c-SOI Photonic Wires

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ql1=Qi1+Qc1.
LTE1TE0=λ2(neff,eneff,o),
Δλr=neffT·λrngr·ΔT,

Metrics