Abstract

In this paper, we proposed a way to realize an Er-doped random fiber laser (RFL) with a disordered fiber Bragg grating (FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the disordered FBG array. The disordered FBG array performs as both the gain medium and random distributed reflectors, which together with a tunable point reflector form the RFL. Coherent multi-mode random lasing is obtained with a threshold of between 7.5 and 10 mW and a power efficiency between 23% and 27% when the reflectivity of the point reflector changes from 4% to 50%. To control the lasing mode of random emission, a specific point of the disordered FBG array is heated so as to shift the wavelength of the FBG(s) at this point away from the other FBGs. Thus, different resonance cavities are formed, and the lasing mode can be controlled by changing the location of the heating point.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings

W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang
Opt. Lett. 40(13) 3181-3184 (2015)

Random fiber laser based on artificially controlled backscattering fibers

Xiaoliang Wang, Daru Chen, Haitao Li, Lijuan She, and Qiong Wu
Appl. Opt. 57(2) 258-262 (2018)

High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings

Ting Feng, Meili Jiang, Yating Ren, Mingming Wang, Fengping Yan, Yuping Suo, and X. Steve Yao
OSA Continuum 2(9) 2526-2538 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [Crossref]
  2. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2010).
    [Crossref]
  3. J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
    [Crossref]
  4. S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
    [Crossref]
  5. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
    [Crossref]
  6. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
    [Crossref]
  7. S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
    [Crossref]
  8. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
    [Crossref]
  9. W. L. Zhang, Y. J. Rao, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
    [Crossref]
  10. H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
    [Crossref]
  11. S. A. Babin, I. D. Vatnik, A. Y. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
    [Crossref]
  12. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
    [Crossref]
  13. W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang, “All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings,” Opt. Lett. 40, 3181–3184 (2015).
    [Crossref]
  14. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17, 395–404 (2009).
    [Crossref]
  15. M. Gagné and R. Kashyap, “Demonstration of a 3  mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17, 19067–19074 (2009).
    [Crossref]
  16. L. Wang, X. Dong, P. P. Shum, X. Liu, and H. Su, “Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber,” J. Lightwave Technol. 33, 95–99 (2015).
    [Crossref]
  17. W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
    [Crossref]
  18. V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
    [Crossref]

2015 (3)

2014 (5)

S. A. Babin, I. D. Vatnik, A. Y. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
[Crossref]

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

2012 (2)

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

W. L. Zhang, Y. J. Rao, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
[Crossref]

2011 (1)

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

2010 (2)

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2010).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

2009 (2)

2008 (2)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

2005 (1)

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref]

Andreasen, J.

Ania-Castanon, J. D.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Asatryan, A. A.

Babin, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Babin, S. A.

S. A. Babin, I. D. Vatnik, A. Y. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Bachelard, N.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

Blanco, A.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Botten, L. C.

Bubnov, M. M.

Byrne, M. A.

Cao, H.

Chaikina, E. I.

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Churkin, D.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Churkin, D. V.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Conti, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Dianov, E. M.

Dong, X.

Ek, S.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

El-Taher, A. E.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Fu, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Gagné, M.

Garcia, P. D.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

García, P. D.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Ge, L.

Genack, A. Z.

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref]

Gigan, S.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

Gong, Y.

Gottardo, S.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Gregersen, N.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Harper, P.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Hu, Z.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Jia, X. H.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

W. L. Zhang, Y. J. Rao, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
[Crossref]

Kablukov, S. I.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Karalekas, V.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Kashyap, R.

Labonté, L.

Laptev, A. Y.

Leonetti, M.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Leskova, T. A.

Li, J.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

Li, S. W.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

Liu, J.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Liu, X.

Lizárraga, N.

Lodahl, P.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Lopez, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Ma, R.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang, “All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings,” Opt. Lett. 40, 3181–3184 (2015).
[Crossref]

Méndez, E. R.

Miao, B.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Milner, V.

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref]

Ming, H.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Mørk, J.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Nikulin, M.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Noblin, X.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

Podivilov, E.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Podivilov, E. V.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Puente, N. P.

Rao, Y. J.

Sapienza, R.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Schubert, M.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Sebbah, P.

Shum, P. P.

Stobbe, S.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Stone, A. D.

Su, H.

Suhr, T.

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Tang, C. H.

Türeci, H. E.

Turitsyn, S.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Turitsyn, S. K.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Vanneste, C.

Vatnik, I.

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Vatnik, I. D.

Wang, L.

Wang, P.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Wang, Y. S.

Wang, Z. N.

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

Xiao, H.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Xu, X.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Yang, Z. J.

Yang, Z. X.

Zeng, X. P.

Zhang, D.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Zhang, H.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Zhang, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Zhang, W. L.

Zhou, P.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Zhu, Y. Y.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Adv. Opt. Photon. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Nat. Nanotechnol. (1)

J. Liu, P. D. García, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, “Random nanolasing in the Anderson localized regime,” Nat. Nanotechnol. 9, 285–289 (2014).
[Crossref]

Nat. Photonics (2)

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Nat. Phys. (2)

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rep. (1)

S. Turitsyn, S. Babin, D. Churkin, I. Vatnik, M. Nikulin, and E. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Phys. Rev. A (1)

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 003828 (2010).
[Crossref]

Phys. Rev. Lett. (2)

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup of the RFL. PM, power meter.
Fig. 2.
Fig. 2. Output power versus pump power for rt of 4%, 25%, and 50%, respectively.
Fig. 3.
Fig. 3. Output spectra of the RFL measured at different times; (a)–(c) correspond to rt = 4 % , (d)–(f) correspond to rt = 50 % . The pump power is 67.7 mW.
Fig. 4.
Fig. 4. Output spectra of the stable and single mode emission when heating different locations of the FBG array. In the experiment, rt = 4 % and the pump power is 67.7 mW.
Fig. 5.
Fig. 5. Output spectra of the stable and single mode emission when heating different locations of the FBG array. In the experiment, rt = 50 % and the pump power is 67.7 mW.
Fig. 6.
Fig. 6. Peak wavelength and peak power of the selected modes versus time. In the experiment, rt = 4 % and the pump power is 67.7 mW.
Fig. 7.
Fig. 7. Peak wavelength and peak power of the selected modes versus time. In the experiment, rt = 4 % and the pump power is 67.7 mW.
Fig. 8.
Fig. 8. Peak wavelength of the stable and single mode emission versus control location for rt of 4% and 50%, respectively.

Metrics