Abstract

We propose a depolarizer based on the principle of a collection of half-wave plates with randomly distributed optic axes. The design is demonstrated by means of dynamically photopatterning liquid crystal into randomly aligned homogeneous domains. We characterize the liquid crystal depolarizer for 1550 nm and C-band (1520–1610 nm). A degree of polarization of less than 5% is obtained for any linearly polarized light. This study provides a practical candidate for high-performance depolarizers.

Journal © 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains

Michinori Honma and Toshiaki Nose
Appl. Opt. 43(24) 4667-4671 (2004)

Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration

Chang-Jae Yu, Dong-Woo Kim, Jinyool Kim, and Sin-Doo Lee
Opt. Lett. 30(15) 1995-1997 (2005)

Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization

A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel
Opt. Express 16(3) 1669-1685 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains,” Appl. Opt. 43, 4667–4671 (2004).
    [Crossref]
  2. P. Schau, L. Fu, K. Frenner, M. Schäferling, H. Schweizer, H. Giessen, L. M. G. Venancio, and W. Osten, “Polarization scramblers with plasmonic meander-type metamaterials,” Opt. Express 20, 22700–22711 (2012).
    [Crossref]
  3. V. Mazurczyk and J. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
    [Crossref]
  4. K. Perlicki, “Investigation of the state of polarization distribution generated by polarization scramblers on the Poincaré sphere,” Opt. Commun. 252, 58–63 (2005).
    [Crossref]
  5. F. Heismann, D. Gray, B. Lee, and R. Smith, “Electrooptic polarization scramblers for optically amplified long-haul transmission systems,” IEEE Photon. Technol. Lett. 6, 1156–1158 (1994).
    [Crossref]
  6. F. Heismann and R. W. Smith, “High-speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
    [Crossref]
  7. Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
    [Crossref]
  8. L. Yao, H. Huang, J. Chen, E. Tan, and A. Willner, “A novel scheme for achieving quasi-uniform rate polarization scrambling at 752  krad/s,” Opt. Express 20, 1691–1699 (2012).
    [Crossref]
  9. S. C. McClain, R. A. Chipman, and L. W. Hillman, “Aberrations of a horizontal-vertical depolarizer,” Appl. Opt. 31, 2326–2331 (1992).
    [Crossref]
  10. J. C. G. de Sande, G. Piquero, and C. Teijeiro, “Polarization changes at Lyot depolarizer output for different types of input beams,” J. Opt. Soc. Am. A 29, 278–284 (2012).
    [Crossref]
  11. A. Shaham and H. S. Eisenberg, “Realizing a variable isotropic depolarizer,” Opt. Lett. 37, 2643–2645 (2012).
    [Crossref]
  12. “Microretarder Depolarizer Array,” https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=8043 .
  13. N. J. Diorio, M. R. Fisch, and J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
    [Crossref]
  14. B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
    [Crossref]
  15. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
    [Crossref]
  16. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal,” Nature 381, 212–215 (1996).
    [Crossref]
  17. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
    [Crossref]
  18. V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
    [Crossref]
  19. B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
    [Crossref]
  20. P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
    [Crossref]
  21. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  22. P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
    [Crossref]
  23. X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
    [Crossref]
  24. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
    [Crossref]
  25. L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
    [Crossref]
  26. M. Schadt and H. Seiberle, “Optical patterning of multidomain LCDs,” J. Soc. Inf. Display 5, 367–370 (1997).

2015 (4)

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

2014 (1)

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

2012 (6)

2007 (1)

Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
[Crossref]

2005 (1)

K. Perlicki, “Investigation of the state of polarization distribution generated by polarization scramblers on the Poincaré sphere,” Opt. Commun. 252, 58–63 (2005).
[Crossref]

2004 (2)

M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains,” Appl. Opt. 43, 4667–4671 (2004).
[Crossref]

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

2001 (1)

N. J. Diorio, M. R. Fisch, and J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[Crossref]

1997 (1)

M. Schadt and H. Seiberle, “Optical patterning of multidomain LCDs,” J. Soc. Inf. Display 5, 367–370 (1997).

1996 (2)

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal,” Nature 381, 212–215 (1996).
[Crossref]

F. Heismann and R. W. Smith, “High-speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[Crossref]

1994 (2)

F. Heismann, D. Gray, B. Lee, and R. Smith, “Electrooptic polarization scramblers for optically amplified long-haul transmission systems,” IEEE Photon. Technol. Lett. 6, 1156–1158 (1994).
[Crossref]

V. Mazurczyk and J. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[Crossref]

1992 (2)

S. C. McClain, R. A. Chipman, and L. W. Hillman, “Aberrations of a horizontal-vertical depolarizer,” Appl. Opt. 31, 2326–2331 (1992).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref]

Chen, J.

Chen, P.

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Chen, Y.

Chigrinov, V.

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
[Crossref]

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Chipman, R. A.

Choi, J. W.

Cui, H. Q.

de Sande, J. C. G.

Diorio, N. J.

N. J. Diorio, M. R. Fisch, and J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[Crossref]

Eisenberg, H. S.

Fisch, M. R.

N. J. Diorio, M. R. Fisch, and J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[Crossref]

Frenner, K.

Fu, L.

Ge, S. J.

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

Giessen, H.

Gomma, R.

Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
[Crossref]

Gray, D.

F. Heismann, D. Gray, B. Lee, and R. Smith, “Electrooptic polarization scramblers for optically amplified long-haul transmission systems,” IEEE Photon. Technol. Lett. 6, 1156–1158 (1994).
[Crossref]

Heismann, F.

F. Heismann and R. W. Smith, “High-speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[Crossref]

F. Heismann, D. Gray, B. Lee, and R. Smith, “Electrooptic polarization scramblers for optically amplified long-haul transmission systems,” IEEE Photon. Technol. Lett. 6, 1156–1158 (1994).
[Crossref]

Hillman, L. W.

Ho, J.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Honma, M.

Hu, H. C.

Hu, W.

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
[Crossref]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[Crossref]

Hu, X. K.

Huang, D. D.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Huang, H.

Ji, W.

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

Jin, B. B.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Kashyap, R.

Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
[Crossref]

Khazimullin, M.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Khoo, I. C.

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Kozenkov, V.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Kwok, H. S.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Lee, B.

F. Heismann, D. Gray, B. Lee, and R. Smith, “Electrooptic polarization scramblers for optically amplified long-haul transmission systems,” IEEE Photon. Technol. Lett. 6, 1156–1158 (1994).
[Crossref]

Li, J. N.

Liang, L. J.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Liang, X.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[Crossref]

Lin, X. W.

Lizé, Y. K.

Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
[Crossref]

Lu, Y. N.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Lu, Y. Q.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett. 37, 3627–3629 (2012).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20, 16684–16689 (2012).
[Crossref]

Mazurczyk, V.

V. Mazurczyk and J. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[Crossref]

McClain, S. C.

Ming, Y.

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

Nose, T.

Osten, W.

Palmer, L.

Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
[Crossref]

Perlicki, K.

K. Perlicki, “Investigation of the state of polarization distribution generated by polarization scramblers on the Poincaré sphere,” Opt. Commun. 252, 58–63 (2005).
[Crossref]

Pikin, S.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Piquero, G.

Qian, H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Rubin, S.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

Schadt, M.

M. Schadt and H. Seiberle, “Optical patterning of multidomain LCDs,” J. Soc. Inf. Display 5, 367–370 (1997).

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal,” Nature 381, 212–215 (1996).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Schäferling, M.

Schau, P.

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Schuster, A.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal,” Nature 381, 212–215 (1996).
[Crossref]

Schweizer, H.

Seiberle, H.

M. Schadt and H. Seiberle, “Optical patterning of multidomain LCDs,” J. Soc. Inf. Display 5, 367–370 (1997).

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal,” Nature 381, 212–215 (1996).
[Crossref]

Shaham, A.

Shao, G. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Smith, R.

F. Heismann, D. Gray, B. Lee, and R. Smith, “Electrooptic polarization scramblers for optically amplified long-haul transmission systems,” IEEE Photon. Technol. Lett. 6, 1156–1158 (1994).
[Crossref]

Smith, R. W.

F. Heismann and R. W. Smith, “High-speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[Crossref]

Tan, E.

Teijeiro, C.

Venancio, L. M. G.

Verevochnikov, A.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Wang, J. G.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

Wang, L.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Wei, B. Y.

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

West, J. L.

N. J. Diorio, M. R. Fisch, and J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[Crossref]

Willner, A.

L. Yao, H. Huang, J. Chen, E. Tan, and A. Willner, “A novel scheme for achieving quasi-uniform rate polarization scrambling at 752  krad/s,” Opt. Express 20, 1691–1699 (2012).
[Crossref]

Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
[Crossref]

Wu, H.

Wu, P. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Wu, S. T.

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref]

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Xu, F.

P. Chen, B. Y. Wei, W. Ji, S. J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y. Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3, 133–139 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

Yao, L.

Zheng, L. Y.

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Zheng, Z. G.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Zhu, G.

Zyskind, J.

V. Mazurczyk and J. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[Crossref]

Adv. Mater. (1)

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26, 1590–1595 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Heismann and R. W. Smith, “High-speed polarization scrambler with adjustable phase chirp,” IEEE J. Sel. Top. Quantum Electron. 2, 311–318 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (2)

V. Mazurczyk and J. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[Crossref]

F. Heismann, D. Gray, B. Lee, and R. Smith, “Electrooptic polarization scramblers for optically amplified long-haul transmission systems,” IEEE Photon. Technol. Lett. 6, 1156–1158 (1994).
[Crossref]

J. Appl. Phys. (1)

N. J. Diorio, M. R. Fisch, and J. L. West, “Filled liquid crystal depolarizers,” J. Appl. Phys. 90, 3675–3678 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Display (1)

M. Schadt and H. Seiberle, “Optical patterning of multidomain LCDs,” J. Soc. Inf. Display 5, 367–370 (1997).

Jpn. J. Appl. Phys. (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Light: Sci. Appl. (1)

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz wave plates driven with porous graphene electrodes,” Light: Sci. Appl. 4, e253 (2015).
[Crossref]

Nature (1)

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal,” Nature 381, 212–215 (1996).
[Crossref]

Opt. Commun. (2)

Y. K. Lizé, R. Gomma, R. Kashyap, L. Palmer, and A. Willner, “Fast all-fiber polarization scrambling using re-entrant Lefevre controller,” Opt. Commun. 279, 50–52 (2007).
[Crossref]

K. Perlicki, “Investigation of the state of polarization distribution generated by polarization scramblers on the Poincaré sphere,” Opt. Commun. 252, 58–63 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. A (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref]

Phys. Rev. E (1)

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
[Crossref]

Sci. Rep. (1)

B. Y. Wei, P. Chen, W. Hu, W. Ji, L. Y. Zheng, S. J. Ge, Y. Ming, V. Chigrinov, and Y. Q. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Other (2)

“Microretarder Depolarizer Array,” https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=8043 .

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Illustration of the LC depolarizer. Different directions of optic axes are indicated by different gray scales. The inset depicts the LC orientations in the red circle.
Fig. 2.
Fig. 2. Flow sheet of the exposure process. Images in green rectangles are exposure patterns for each step; images in red rectangles present the accumulated polarization information correspondingly.
Fig. 3.
Fig. 3. Micrograph of the LC depolarizer, with the arrows indicating the directions of the analyzer and polarizer. Scale bar is 100 μm.
Fig. 4.
Fig. 4. DOP results at different incident polarization. Blue dots stand for the DOP for ASE source; red dots stand for those of the 1550 nm laser.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

DOP=S12+S22+S32S0,
[S0S1S2S3]=[10000cos4αsin4α00sin4αcos4α00001][1cos2βsin2β0]=[1cos(4α2β)sin(4α2β)0],
S1=1Wi=1Nwicos(4αi2β),
S2=1Wi=1Nwisin(4αi2β),

Metrics