Abstract

In this paper, we derive the analytical expression for the multipole expansion coefficients of scattering and interior fields of a graphene-coated dielectric particle under the illumination of an arbitrary optical beam. By using this arbitrary beam theory, we systematically investigate the optical forces exerted on the graphene-coated particle by a focused Gaussian beam. Via tuning the chemical potential of the graphene, the optical force spectra could be modulated accordingly at resonant excitation. The hybridized whispering gallery mode of the electromagnetic field inside the graphene-coated polystyrene particle is more intensively localized than the pure polystyrene particle, which leads to a weakened morphology-dependent resonance in the optical forces. These investigations could open new perspectives for dynamic engineering of optical manipulations in optical tweezers applications.

Journal © 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optical forces exerted on a black phosphorus coated dielectric particle by a Gaussian beam

Yang Yang, Xing Jiang, Banxian Ruan, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Mater. Express 8(2) 211-220 (2018)

Optical forces on Mie particles in an Airy evanescent field

Yang Yang, Wei-Ping Zang, Zhi-Yu Zhao, and Jian-Guo Tian
Opt. Express 20(23) 25681-25692 (2012)

Morphology-dependent resonance of the optical forces on Mie particles in an Airy beam

Yang Yang, Wei-Ping Zang, Zi-Yu Zhao, and Jian-Guo Tian
Opt. Express 21(5) 6186-6195 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  2. P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89, 081113 (2006).
    [Crossref]
  3. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
    [Crossref]
  4. M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett. 35, 4078–4080 (2010).
    [Crossref]
  5. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref]
  6. Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
    [Crossref]
  7. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [Crossref]
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [Crossref]
  9. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
    [Crossref]
  10. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
    [Crossref]
  11. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
    [Crossref]
  12. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic transverse electric plasmons on magnetically biased graphene sheets,” J. Appl. Phys. 112, 124906 (2012).
    [Crossref]
  13. N. Papasimakis, Z. Luo, Z. X. Shen, F. D. Angelis, E. D. Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
    [Crossref]
  14. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
    [Crossref]
  15. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
    [Crossref]
  16. O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
    [Crossref]
  17. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  18. J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
    [Crossref]
  19. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  20. Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
    [Crossref]
  21. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21, 10475–10482 (2013).
    [Crossref]
  22. T. H. Xiao, L. Gan, and Z. Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3, 300–307 (2015).
    [Crossref]
  23. P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).
  24. B. Zhu, G. Ren, Y. Gao, Y. Yang, Y. Lian, and S. Jian, “Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes,” Opt. Express 22, 24096–24103 (2014).
    [Crossref]
  25. Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide,” Opt. Lett. 39, 5909–5912 (2014).
    [Crossref]
  26. J. S. Lee, S. I. Kim, J. C. Yoon, and J. H. Jang, “Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor,” ACS Nano 7, 6047–6055 (2013).
    [Crossref]
  27. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
    [Crossref]
  28. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
    [Crossref]
  29. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
    [Crossref]
  30. L. A. Falkovsky, in Optical Properties of Graphene (IOP Publishing, 2008), p 012004.
  31. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
    [Crossref]
  32. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
    [Crossref]
  33. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
  34. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
    [Crossref]
  35. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
    [Crossref]
  36. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref]
  37. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).
    [Crossref]
  38. Y. Yang, W. P. Zang, Z. Y. Zhao, and J. G. Tian, “Morphology-dependent resonance of the optical forces on Mie particles in an Airy beam,” Opt. Express 21, 6186–6195 (2013).
    [Crossref]

2015 (3)

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
[Crossref]

T. H. Xiao, L. Gan, and Z. Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3, 300–307 (2015).
[Crossref]

2014 (2)

2013 (4)

J. S. Lee, S. I. Kim, J. C. Yoon, and J. H. Jang, “Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor,” ACS Nano 7, 6047–6055 (2013).
[Crossref]

W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21, 10475–10482 (2013).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Y. Yang, W. P. Zang, Z. Y. Zhao, and J. G. Tian, “Morphology-dependent resonance of the optical forces on Mie particles in an Airy beam,” Opt. Express 21, 6186–6195 (2013).
[Crossref]

2012 (6)

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic transverse electric plasmons on magnetically biased graphene sheets,” J. Appl. Phys. 112, 124906 (2012).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[Crossref]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

2011 (5)

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

2010 (5)

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

N. Papasimakis, Z. Luo, Z. X. Shen, F. D. Angelis, E. D. Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
[Crossref]

M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett. 35, 4078–4080 (2010).
[Crossref]

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

2009 (1)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

2008 (2)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

2007 (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[Crossref]

2006 (1)

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89, 081113 (2006).
[Crossref]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

1993 (1)

1989 (2)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

1988 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

1986 (1)

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Ahn, J. H.

J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[Crossref]

Ajayan, P. M.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Alù, A.

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

Angelis, F. D.

Ashkin, A.

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Barton, J. P.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

Basov, D. N.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Bjorkholm, J. E.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Borghese, F.

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Boudouris, B. W.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Calogero, G.

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Chen, C. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Chen, K.

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Chen, P. Y.

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

Cho, D. J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

Chu, S.

Crommie, M. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Cui, T. J.

Denti, P.

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Dong, Z. G.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Dziedzic, J. M.

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Efetov, D. K.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Fabrizio, E. D.

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[Crossref]

L. A. Falkovsky, in Optical Properties of Graphene (IOP Publishing, 2008), p 012004.

Fang, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Gan, L.

T. H. Xiao, L. Gan, and Z. Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3, 300–307 (2015).
[Crossref]

Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
[Crossref]

Gao, Y.

García de Abajo, F. J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Geng, B.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Girit, C.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Gómez-Díaz, J. S.

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic transverse electric plasmons on magnetically biased graphene sheets,” J. Appl. Phys. 112, 124906 (2012).
[Crossref]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Grigorenko, A. N.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Guo, H. L.

Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
[Crossref]

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Halas, N. J.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Hao, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Horng, J.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Iatì, M. A.

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Jang, J. H.

J. S. Lee, S. I. Kim, J. C. Yoon, and J. H. Jang, “Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor,” ACS Nano 7, 6047–6055 (2013).
[Crossref]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Johnson, B. R.

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89, 081113 (2006).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Kim, J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

Kim, K.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

Kim, P.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Kim, S. I.

J. S. Lee, S. I. Kim, J. C. Yoon, and J. H. Jang, “Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor,” ACS Nano 7, 6047–6055 (2013).
[Crossref]

Koppens, F. H. L.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Lee, J. S.

J. S. Lee, S. I. Kim, J. C. Yoon, and J. H. Jang, “Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor,” ACS Nano 7, 6047–6055 (2013).
[Crossref]

Lee, Y. B.

J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[Crossref]

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Li, Z. Y.

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
[Crossref]

T. H. Xiao, L. Gan, and Z. Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3, 300–307 (2015).
[Crossref]

Lian, Y.

Liu, J.

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Liu, R. J.

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Liu, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Lombardo, A.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Louie, S. G.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Lu, W. B.

Luo, Z.

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Martin, M. C.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Ni, Z. H.

Nicolosi, V.

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Nieto-Vesperinas, M.

Nikolaenko, A. E.

Niu, J.

J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[Crossref]

Nordlander, P.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Novoselov, K. S.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Papasimakis, N.

Park, C. H.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Perruisseau-Carrier, J.

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic transverse electric plasmons on magnetically biased graphene sheets,” J. Appl. Phys. 112, 124906 (2012).
[Crossref]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Privitera, G.

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Regan, W.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

Ren, G.

Saenz, J. J.

Saffari, N.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89, 081113 (2006).
[Crossref]

Saija, R.

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

Segalman, R. A.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Shen, Y. R.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

Shen, Z. X.

Shi, S.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

Shi, Z.

Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
[Crossref]

Shin, Y. J.

J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[Crossref]

Son, H.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

Soric, J.

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Stride, E.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89, 081113 (2006).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

Tian, J. G.

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[Crossref]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Wang, F.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Wang, J.

Wang, Y.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Xiao, T. H.

Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
[Crossref]

T. H. Xiao, L. Gan, and Z. Y. Li, “Graphene surface plasmon polaritons transport on curved substrates,” Photon. Res. 3, 300–307 (2015).
[Crossref]

Xu, H. J.

Yang, H. S.

J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[Crossref]

Yang, M. C.

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

Yang, Y.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Yoon, J. C.

J. S. Lee, S. I. Kim, J. C. Yoon, and J. H. Jang, “Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor,” ACS Nano 7, 6047–6055 (2013).
[Crossref]

Zang, W. P.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zettl, A.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhao, Z. Y.

Zheludev, N. I.

Zhu, B.

Zhu, W.

Zong, Y. W.

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

ACS Nano (4)

Y. W. Zong, J. Liu, R. J. Liu, H. L. Guo, M. C. Yang, Z. Y. Li, and K. Chen, “An optically driven bistable Janus rotor with patterned metal coatings,” ACS Nano 9, 10844–10851 (2015).
[Crossref]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

O. M. Maragò, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A. C. Ferrari, “Brownian motion of graphene,” ACS Nano 4, 7515–7523 (2010).
[Crossref]

J. S. Lee, S. I. Kim, J. C. Yoon, and J. H. Jang, “Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor,” ACS Nano 7, 6047–6055 (2013).
[Crossref]

ACS Photon. (1)

Z. Shi, L. Gan, T. H. Xiao, H. L. Guo, and Z. Y. Li, “All-optical modulation of a graphene-cladded silicon photonic crystal cavity,” ACS Photon. 2, 1513–1518 (2015).
[Crossref]

Adv. Mater. (1)

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281–OP304 (2012).

Appl. Phys. Lett. (3)

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89, 081113 (2006).
[Crossref]

J. Niu, Y. J. Shin, Y. B. Lee, J. H. Ahn, and H. S. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100, 061116 (2012).
[Crossref]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Eur. Phys. J. B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[Crossref]

J. Appl. Phys. (4)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[Crossref]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic transverse electric plasmons on magnetically biased graphene sheets,” J. Appl. Phys. 112, 124906 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (4)

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8, 1486–1491 (2008).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with grapheme,” Nano Lett. 12, 5598–5602 (2012).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Nat. Commun. (1)

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Nat. Phys. (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Nature (4)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617–620 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rev. Lett. (1)

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

Other (1)

L. A. Falkovsky, in Optical Properties of Graphene (IOP Publishing, 2008), p 012004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Focused Gaussian beam with waist radius w 0 is incident upon a graphene-coated polystyrene spherical particle with radius R .
Fig. 2.
Fig. 2. Vertical optical force F z exerted on a graphene-coated polystyrene particle by a focused Gaussian beam as a function of wavelength with different (a) particle radius and (b) Fermi energy. (c) and (d) plot the resonant wavelength as a function of particle radius and Fermi energy, respectively.
Fig. 3.
Fig. 3. Optical forces as a function of the displacement of beam center along the x axis on a graphene-coated polystyrene particle with radius R = 50    nm at resonant excitation wavelength λ = 5151    nm : (a) horizontal direction F x and (b) vertical direction F z with different Fermi energy impactions. Inset: Optical force F z with Fermi energy E f = 0.6    eV .
Fig. 4.
Fig. 4. Vertical forces F z as a function of the displacement of beam center along the z axis with different Fermi energy of the graphene coating. λ = 5151    nm , R = 50    nm .
Fig. 5.
Fig. 5. Optical force as a function of the particle radius: (a) polystyrene particle; (b) graphene-coated polystyrene particle; (c) empty graphene particle.
Fig. 6.
Fig. 6. WGM of electric field patterns of: (a), (d) polystyrene particle, (b), (e) graphene-coated polystyrene particle, (c), (f) bare graphene shell, at resonance of (a)–(c) electric field multipoles a 12 and (d)–(f) magnetic multipoles b 12 , respectively.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Π E ( i ) = l = 1 m = l l A l m ψ l ( k 1 r ) Y l m ( θ , ϕ ) , Π H ( i ) = l = 1 m = l l B l m ψ l ( k 1 r ) Y l m ( θ , ϕ ) ,
Π E ( s ) = l = 1 m = l l a l A l m ξ l ( 1 ) ( k 1 r ) Y l m ( θ , ϕ ) , Π H ( s ) = l = 1 m = l l b l B l m ξ l ( 1 ) ( k 1 r ) Y l m ( θ , ϕ ) ,
Π E ( w ) = l = 1 m = l l c l A l m ψ l ( k 2 r ) Y l m ( θ , ϕ ) , Π H ( w ) = l = 1 m = l l d l B l m ψ l ( k 2 r ) Y l m ( θ , ϕ ) .
Y l m ( θ , ϕ ) = [ 2 l + 1 4 π ( l m ) ! ( l + m ) ! ] 1 / 2 P l m ( cos θ ) exp ( i m ϕ ) .
A l m = 1 l ( l + 1 ) ψ l ( α 2 ) 0 2 π 0 π E r ( i ) ( R , θ , ϕ ) Y l m * ( θ , ϕ ) sin θ d θ d ϕ , B l m = 1 l ( l + 1 ) ψ l ( α 2 ) 0 2 π 0 π H r ( i ) ( R , θ , ϕ ) Y l m * ( θ , ϕ ) sin θ d θ d ϕ ,
2 Π + k 2 Π = 0 .
e r × ( E i + E s E w ) = 0 e r × ( H i + H s H w ) = K = σ ( ω ) E ,
σ ( ω ) = σ int ra ( ω ) + σ int er ( ω ) .
σ int ra ( ω ) = i 2 e 2 k B T π 2 ( ω + i τ G 1 ) ln [ 2 cosh ( E f 2 k b T ) ] ,
σ int er ( ω ) = e 2 4 [ 1 2 + 1 π arctan ( ω 2 E f 2 k B T ) i 2 π ln ( ω + 2 E f ) 2 ( ω 2 E f ) 2 + 4 k b 2 T 2 ] ,
a l = [ n ˜ ψ l ( α 1 ) ψ l ( α 2 ) ψ l ( α 2 ) ψ l ( α 1 ) + ( 1 / n 2 ) σ ( ω ) · ψ l ( α 1 ) ψ l ( α 2 ) ] / [ n ˜ ψ l ( α 1 ) ξ l ( α 2 ) ξ l ( 1 ) ( α 2 ) ψ l ( α 1 ) + ( 1 / n 2 ) σ ( ω ) · ψ l ( α 1 ) ξ l ( α 2 ) ] ,
b l = [ n ˜ ψ l ( α 1 ) ψ l ( α 2 ) ψ l ( α 1 ) ψ l ( α 2 ) + ( 1 / n 2 ) σ ( ω ) · ψ l ( α 1 ) ψ l ( α 2 ) ] / [ n ˜ ψ l ( α 1 ) ξ l ( α 2 ) ψ l ( α 1 ) ξ l ( 1 ) ( α 2 ) + ( 1 / n 2 ) σ ( ω ) · ψ l ( α 1 ) ξ l ( α 2 ) ] ,
c l = n ˜ [ ψ l ( α 2 ) ξ l ( α 2 ) ψ l ( α 2 ) ξ l ( 1 ) ( α 2 ) ] / [ n ˜ ψ l ( α 1 ) ξ l ( α 2 ) ξ l ( 1 ) ( α 2 ) ψ l ( α 1 ) + ( 1 / n 2 ) σ ( ω ) · ψ l ( α 1 ) ξ l ( α 2 ) ] ,
d l = [ ψ l ( α 2 ) ξ l ( α 2 ) ψ l ( α 2 ) ξ l ( 1 ) ( α 2 ) ] / [ n ˜ ψ l ( α 1 ) ξ l ( α 2 ) ψ l ( α 1 ) ξ l ( 1 ) ( α 2 ) + ( 1 / n 2 ) σ ( ω ) · ψ l ( α 1 ) ξ l ( α 2 ) ] .
a l m = a l A l m , b l m = b l B l m .

Metrics