Abstract

We describe and experimentally demonstrate a measuring technique for Mach–Zehnder interferometer (MZI) based integrated photonic biochemical sensors. Our technique is based on the direct measurement of phase changes between the arms of the MZI, achieved by signal modulation on one of the arms of the interferometer together with pseudoheterodyne detection, and it allows us to avoid the use of costly equipment such as tunable light sources or spectrum analyzers. The obtained output signal is intrinsically independent of wavelength, power variations, and global thermal variations, making it extremely robust and adequate for use in real conditions. Using a silicon-on-insulator MZI, we demonstrate the real-time monitoring of refractive index variations and achieve a detection limit of 4.1×106 refractive index units (RIU).

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer

Fellipe Grillo Peternella, Boling Ouyang, Roland Horsten, Michael Haverdings, Pim Kat, and Jacob Caro
Opt. Express 25(25) 31622-31639 (2017)

Optical frequency comb based system for photonic refractive index sensor interrogation

Markus Knoerzer, Crispin Szydzik, Guanghui Ren, Cesar S. Huertas, Sonya Palmer, Phuong Tang, Thach G. Nguyen, Lam Bui, Andreas Boes, and Arnan Mitchell
Opt. Express 27(15) 21532-21545 (2019)

Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide

Qing Liu, Kyung Woo Kim, Zhonghua Gu, Jack Sheng Kee, and Mi Kyoung Park
Opt. Express 22(23) 27910-27920 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
    [Crossref]
  2. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
    [Crossref]
  3. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
    [Crossref]
  4. J. García-Rupérez, V. Toccafondo, M. J. Bañuls, J. García Castelló, A. Griol, S. Peransi-Llopis, and Á. Maquieira, “Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime,” Opt. Express 18, 24276–24286 (2010).
    [Crossref]
  5. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
    [Crossref]
  6. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
    [Crossref]
  7. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
    [Crossref]
  8. S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
    [Crossref]
  9. D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
    [Crossref]
  10. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.
  11. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  12. K. Y. Chu and A. R. Ralph Thompson, “Densities and refractive indices of alcohol-water solutions of n-propyl, isopropyl, and methyl alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
    [Crossref]
  13. C. B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
    [Crossref]
  14. F. Koohyar, A. A. Rostami, M. J. Chaichi, and F. Kiani, “Study on thermodynamic properties for binary systems of water+L-cysteine hydrochloride monohydrate, glycerol, and d-sorbitol at various temperatures,” J. Chem. 2013, 601751 (2013).
    [Crossref]
  15. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
    [Crossref]
  16. G. D. Kim, H. S. Lee, C. H. Park, S. S. Lee, B. T. Lim, H. K. Bae, and W. G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18, 22215–22221 (2010).
    [Crossref]

2015 (1)

2013 (1)

F. Koohyar, A. A. Rostami, M. J. Chaichi, and F. Kiani, “Study on thermodynamic properties for binary systems of water+L-cysteine hydrochloride monohydrate, glycerol, and d-sorbitol at various temperatures,” J. Chem. 2013, 601751 (2013).
[Crossref]

2012 (3)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref]

2010 (3)

2009 (1)

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

2008 (1)

2006 (1)

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

2004 (1)

C. B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[Crossref]

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

1982 (1)

D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[Crossref]

1962 (1)

K. Y. Chu and A. R. Ralph Thompson, “Densities and refractive indices of alcohol-water solutions of n-propyl, isopropyl, and methyl alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

Absil, P.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Bae, H. K.

Baets, R.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Bailey, R. C.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

Bañuls, M. J.

Bienstman, P.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Bogaerts, W.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Chaichi, M. J.

F. Koohyar, A. A. Rostami, M. J. Chaichi, and F. Kiani, “Study on thermodynamic properties for binary systems of water+L-cysteine hydrochloride monohydrate, glycerol, and d-sorbitol at various temperatures,” J. Chem. 2013, 601751 (2013).
[Crossref]

Cheben, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Chen, L.

Chen, R. T.

Chu, K. Y.

K. Y. Chu and A. R. Ralph Thompson, “Densities and refractive indices of alcohol-water solutions of n-propyl, isopropyl, and methyl alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

Claes, T.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Corke, M.

D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[Crossref]

Dante, S.

De Vos, K.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Delâge, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Densmore, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Duval, D.

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

García Castelló, J.

García-Rupérez, J.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

González-Guerrero, A. B.

Griol, A.

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

Hosseini, A.

Jackson, D. A.

D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[Crossref]

Janz, S.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Jones, J. D. C.

D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[Crossref]

Kersey, A. D.

D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[Crossref]

Kiani, F.

F. Koohyar, A. A. Rostami, M. J. Chaichi, and F. Kiani, “Study on thermodynamic properties for binary systems of water+L-cysteine hydrochloride monohydrate, glycerol, and d-sorbitol at various temperatures,” J. Chem. 2013, 601751 (2013).
[Crossref]

Kim, C. B.

C. B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[Crossref]

Kim, G. D.

Koohyar, F.

F. Koohyar, A. A. Rostami, M. J. Chaichi, and F. Kiani, “Study on thermodynamic properties for binary systems of water+L-cysteine hydrochloride monohydrate, glycerol, and d-sorbitol at various temperatures,” J. Chem. 2013, 601751 (2013).
[Crossref]

Kwong, D.

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

Lamontagne, B.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Lapointe, J.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref]

Lee, H. S.

Lee, S. S.

Lee, W. G.

Lepage, G.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Lim, B. T.

Lipson, M.

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

Maquieira, Á.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Masood, A.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Molera, J. G.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Pantouvaki, M.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Park, C. H.

Peransi-Llopis, S.

Post, E.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Ralph Thompson, A. R.

K. Y. Chu and A. R. Ralph Thompson, “Densities and refractive indices of alcohol-water solutions of n-propyl, isopropyl, and methyl alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Robinson, J. T.

Rostami, A. A.

F. Koohyar, A. A. Rostami, M. J. Chaichi, and F. Kiani, “Study on thermodynamic properties for binary systems of water+L-cysteine hydrochloride monohydrate, glycerol, and d-sorbitol at various temperatures,” J. Chem. 2013, 601751 (2013).
[Crossref]

Schacht, E.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

Schmid, J. H.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Sendra, J. R.

Sepúlveda, B.

Su, C. B.

C. B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[Crossref]

Subbaraman, H.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Toccafondo, V.

Van Campenhout, J.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Van Thourhout, D.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Verheyen, P.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Waldron, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Xu, D. X.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Xu, X.

Zhang, X.

Zhang, Y.

Anal. Chem. (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

Electron. Lett. (1)

D. A. Jackson, A. D. Kersey, M. Corke, and J. D. C. Jones, “Pseudoheterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[Crossref]

IEEE Photon. J. (1)

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

J. Chem. (1)

F. Koohyar, A. A. Rostami, M. J. Chaichi, and F. Kiani, “Study on thermodynamic properties for binary systems of water+L-cysteine hydrochloride monohydrate, glycerol, and d-sorbitol at various temperatures,” J. Chem. 2013, 601751 (2013).
[Crossref]

J. Chem. Eng. Data (1)

K. Y. Chu and A. R. Ralph Thompson, “Densities and refractive indices of alcohol-water solutions of n-propyl, isopropyl, and methyl alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

Laser Photon. Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Kim and C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Opt. Express (5)

Sens. Actuators B Chem. (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61, 100–127 (1999).
[Crossref]

Other (1)

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 83–84.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Setup used for the sensing experiments. The top spirals are exposed to the liquid (sensing arm), while the bottom ones are cladded and act as a reference. PIC, photonic integrated circuit; PM, phase modulator; PD, photodetector; PC, personal computer. (b) SEM micrograph of the spirals area.
Fig. 2.
Fig. 2. Real-time refractive index sensing for IPA-in-water solutions. Phase shift versus time is reported for different IPA-in-water concentrations.
Fig. 3.
Fig. 3. Phase shift versus time for different glycerol concentrations in water.
Fig. 4.
Fig. 4. Measured response for different concentrations of glycerol (circles) and IPA (triangles). Linear fits of the response versus concentration for each case are also shown.

Tables (1)

Tables Icon

Table 1. Refractive Index Values (at 1.55 μm) of IPA and Glycerol Aqueous Solutions at Low Concentrations, Together with Effective Index Variation Calculations and Expected Phase Response Extracted from Eq. (1)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δφ=2πλLΔneff=2πλLneffnΔn,
DL=3σS,

Metrics