Abstract

We report on the optical trapping and orientation of Escherichia coli (E. coli) cells using two tapered fiber probes. With a laser beam at 980 nm wavelength launched into probe I, an E. coli chain consisting of three cells was formed at the tip of probe I. After launching a beam at 980 nm into probe II, the E. coli at the end of the chain was trapped and oriented via the optical torques yielded by two probes. The orientation of the E. coli was controlled by adjusting the laser power of probe II. Experimental results were interpreted by theoretical analysis and numerical simulations.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber

Qiangzhou Rong, Yi Zhou, Xunli Yin, Zhihua Shao, and Xueguang Qiao
Biomed. Opt. Express 8(9) 4096-4107 (2017)

Two dimensional interferometric optical trapping of multiple particles and Escherichia coli bacterial cells using a lensed multicore fiber

Ashleigh L. Barron, Ajoy K. Kar, Thomas J. Aspray, Andrew J. Waddie, Mohammad R. Taghizadeh, and Henry T. Bookey
Opt. Express 21(11) 13199-13207 (2013)

Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application

Zhihai Liu, Chengkai Guo, Jun Yang, and Libo Yuan
Opt. Express 14(25) 12510-12516 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,” Appl. Environ. Microbiol. 70, 675–678 (2004).
    [Crossref]
  2. D. R. Tyson, S. P. Garbett, P. L. Frick, and V. Quaranta, “Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data,” Nat. Methods 9, 923–928 (2012).
    [Crossref]
  3. T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
    [Crossref]
  4. G. Carmon and M. Feingold, “Rotation of single bacterial cells relative to the optical axis using optical tweezers,” Opt. Lett. 36, 40–42 (2011).
    [Crossref]
  5. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
    [Crossref]
  6. C. Schlieker, B. Bukau, and A. Mogk, “Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology,” J. Biotechnol. 96, 13–21 (2002).
    [Crossref]
  7. E. Russo, “Special report: the birth of biotechnology,” Nature 421, 456–457 (2003).
    [Crossref]
  8. H. C. Berg, “The rotary motor of bacterial flagella,” Biochemistry 72, 19–54 (2003).
    [Crossref]
  9. J. Tailleur and M. E. Cates, “Statistical mechanics of interacting run-and–tumble bacteria,” Phys. Rev. Lett. 100, 218103 (2008).
    [Crossref]
  10. S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
    [Crossref]
  11. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [Crossref]
  12. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
    [Crossref]
  13. H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).
  14. H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli–based biophotonic waveguides,” Nano Lett. 13, 3408–3413 (2013).
    [Crossref]
  15. A. L. Barron, A. K. Kar, T. J. Aspray, A. J. Waddie, M. R. Taghizadeh, and H. T. Bookey, “Two-dimensional interferometric optical trapping of multiple particles and Escherichia coli bacterial cells using a lensed multicore fiber,” Opt. Express 21, 13199–13207 (2013).
    [Crossref]
  16. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
    [Crossref]
  17. A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19, 045704 (2008).
    [Crossref]
  18. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
    [Crossref]
  19. T. Shaoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
    [Crossref]

2014 (1)

T. Shaoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

2013 (3)

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli–based biophotonic waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref]

A. L. Barron, A. K. Kar, T. J. Aspray, A. J. Waddie, M. R. Taghizadeh, and H. T. Bookey, “Two-dimensional interferometric optical trapping of multiple particles and Escherichia coli bacterial cells using a lensed multicore fiber,” Opt. Express 21, 13199–13207 (2013).
[Crossref]

2012 (1)

D. R. Tyson, S. P. Garbett, P. L. Frick, and V. Quaranta, “Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data,” Nat. Methods 9, 923–928 (2012).
[Crossref]

2011 (1)

2009 (1)

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

2008 (4)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19, 045704 (2008).
[Crossref]

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

J. Tailleur and M. E. Cates, “Statistical mechanics of interacting run-and–tumble bacteria,” Phys. Rev. Lett. 100, 218103 (2008).
[Crossref]

2007 (1)

2004 (2)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
[Crossref]

A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,” Appl. Environ. Microbiol. 70, 675–678 (2004).
[Crossref]

2003 (2)

E. Russo, “Special report: the birth of biotechnology,” Nature 421, 456–457 (2003).
[Crossref]

H. C. Berg, “The rotary motor of bacterial flagella,” Biochemistry 72, 19–54 (2003).
[Crossref]

2002 (1)

C. Schlieker, B. Bukau, and A. Mogk, “Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology,” J. Biotechnol. 96, 13–21 (2002).
[Crossref]

1997 (1)

1974 (1)

S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
[Crossref]

Adler, J.

S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
[Crossref]

Aspray, T. J.

Ballagi, A.

A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,” Appl. Environ. Microbiol. 70, 675–678 (2004).
[Crossref]

Baranyi, J.

A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,” Appl. Environ. Microbiol. 70, 675–678 (2004).
[Crossref]

Barron, A. L.

Berg, H. C.

H. C. Berg, “The rotary motor of bacterial flagella,” Biochemistry 72, 19–54 (2003).
[Crossref]

Bookey, H. T.

Bukau, B.

C. Schlieker, B. Bukau, and A. Mogk, “Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology,” J. Biotechnol. 96, 13–21 (2002).
[Crossref]

Carmon, G.

Cates, M. E.

J. Tailleur and M. E. Cates, “Statistical mechanics of interacting run-and–tumble bacteria,” Phys. Rev. Lett. 100, 218103 (2008).
[Crossref]

Chachisvilis, M.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
[Crossref]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
[Crossref]

Elfwing, A.

A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,” Appl. Environ. Microbiol. 70, 675–678 (2004).
[Crossref]

Erickson, D.

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19, 045704 (2008).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Feingold, M.

Frick, P. L.

D. R. Tyson, S. P. Garbett, P. L. Frick, and V. Quaranta, “Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data,” Nat. Methods 9, 923–928 (2012).
[Crossref]

Garbett, S. P.

D. R. Tyson, S. P. Garbett, P. L. Frick, and V. Quaranta, “Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data,” Nat. Methods 9, 923–928 (2012).
[Crossref]

García de Abajo, F. J.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Gauthier, R. C.

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Gosse, J. A.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Gould, T. J.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Gudheti, M. V.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Gunewardene, M. S.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
[Crossref]

Hess, S. T.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Kar, A. K.

Kort, E. N.

S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
[Crossref]

Larsen, S. H.

S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
[Crossref]

Lei, H.

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

LeMarc, Y.

A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,” Appl. Environ. Microbiol. 70, 675–678 (2004).
[Crossref]

Li, B.

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli–based biophotonic waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref]

Li, Y.

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli–based biophotonic waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref]

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

Lipson, M.

Liu, K. K.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Liu, X.

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli–based biophotonic waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref]

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
[Crossref]

Mogk, A.

C. Schlieker, B. Bukau, and A. Mogk, “Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology,” J. Biotechnol. 96, 13–21 (2002).
[Crossref]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Quaranta, V.

D. R. Tyson, S. P. Garbett, P. L. Frick, and V. Quaranta, “Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data,” Nat. Methods 9, 923–928 (2012).
[Crossref]

Quidant, R.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Reader, R. W.

S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
[Crossref]

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

Russo, E.

E. Russo, “Special report: the birth of biotechnology,” Nature 421, 456–457 (2003).
[Crossref]

Schlieker, C.

C. Schlieker, B. Bukau, and A. Mogk, “Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology,” J. Biotechnol. 96, 13–21 (2002).
[Crossref]

Schmidt, B. S.

Shaoji, T.

T. Shaoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

Taghizadeh, M. R.

Tailleur, J.

J. Tailleur and M. E. Cates, “Statistical mechanics of interacting run-and–tumble bacteria,” Phys. Rev. Lett. 100, 218103 (2008).
[Crossref]

Tso, W. W.

S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
[Crossref]

Tsuboi, Y.

T. Shaoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

Tyson, D. R.

D. R. Tyson, S. P. Garbett, P. L. Frick, and V. Quaranta, “Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data,” Nat. Methods 9, 923–928 (2012).
[Crossref]

Verkhusha, V. V.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Waddie, A. J.

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
[Crossref]

Xin, H.

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli–based biophotonic waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref]

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

Yang, A. H. J.

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19, 045704 (2008).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Yin, S. R.

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Zhang, H.

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Zhang, Y.

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

Appl. Environ. Microbiol. (1)

A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,” Appl. Environ. Microbiol. 70, 675–678 (2004).
[Crossref]

Biochemistry (1)

H. C. Berg, “The rotary motor of bacterial flagella,” Biochemistry 72, 19–54 (2003).
[Crossref]

Biophys. J. (1)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87, 1298–1306 (2004).
[Crossref]

J. Biotechnol. (1)

C. Schlieker, B. Bukau, and A. Mogk, “Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology,” J. Biotechnol. 96, 13–21 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

T. Shaoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

J. R. Soc. Interface (1)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5, 671–690 (2008).
[Crossref]

Nano Lett. (2)

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref]

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli–based biophotonic waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref]

Nanotechnology (1)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19, 045704 (2008).
[Crossref]

Nat. Methods (2)

D. R. Tyson, S. P. Garbett, P. L. Frick, and V. Quaranta, “Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data,” Nat. Methods 9, 923–928 (2012).
[Crossref]

T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, and S. T. Hess, “Nanoscale imaging of molecular positions and anisotropies,” Nat. Methods 5, 1027–1030 (2008).
[Crossref]

Nature (2)

E. Russo, “Special report: the birth of biotechnology,” Nature 421, 456–457 (2003).
[Crossref]

S. H. Larsen, R. W. Reader, E. N. Kort, W. W. Tso, and J. Adler, “Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli,” Nature 249, 74–77 (1974).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. Tailleur and M. E. Cates, “Statistical mechanics of interacting run-and–tumble bacteria,” Phys. Rev. Lett. 100, 218103 (2008).
[Crossref]

Sci. Rep. (1)

H. Xin, Y. Zhang, H. Lei, Y. Li, H. Zhang, and B. Li, “Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fiber,” Sci. Rep. 3, 1993 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schemes for the experimental model and setup. (a) Experimental model. The point O is the intersection point of two fiber probes at which the E. coli cell will be trapped. (b) An E. coli cell chain was formed with a laser beam launched into probe I. (c) The E. coli cell is orientated along the axial of probe II when P2>P1. (d) The cell is orientated along probe I when P1>P2. (e) Experimental setup. Insets I and III indicate the optical microscope images of probe II and probe I, respectively. Inset II shows the scanning electron micrograph of the E. coli cells.

Fig. 2.
Fig. 2.

Optical microscope images for trapping and orientation of the E. coli. (a) At t=0s, turning on the 980 nm laser of 25 mW into probe I, the cells began to be trapped one after another. (b) At t=2s, a cell chain consisting of three E. coli cells was connected to the tip of probe I. (c) At t=3s, after a laser beam of 20 mW was injected into probe II, the last E. coli of the chain was pulled away from the chain. (d) At t=3.3s, the angle between the axis of the E. coli and probe II (θ) was 19°. (e) At t=4.2s, the input power of probe II was increased from 20 to 35 mW and the cell was orientated along probe II with θ of 0. (f) At t=6s, the input power of probe II was decreased from 35 to 15 mW and the cell began to rotate. (g) At t=6.6s, the cell was orientated along probe I with θ of 30°.

Fig. 3.
Fig. 3.

Simulated distributions of energy density for the two probes. (a) Energy density distribution of probe I. (b) Energy density along the axis of probe I. (c) Energy density distribution of probe II. (d) Energy density along the axis of probe I.

Fig. 4.
Fig. 4.

Optical forces and torques. (a) Optical torques and rotational potential energy as a function of azimuthal angle θ. The inset shows the calculation model. The E. coli is orientated with an angle θ to the axis of probe II. Point i indicates the arbitrary interaction point with a position vector ri from the central point of the E. coli. (b) Simulated energy density distributions for E. coli chains consisting of 1–4 cells. (c) Energy density distribution along the axis of probe II with cell numbers of 0, 1, 2, and 3. The points A, B, and C were the positions of the cell chain extremities. X=1.1 was the X coordinate of the point O. (d) Calculated resultant force (F) exerted on the last E. coli chain as a function of the E. coli number (N). The inset shows the calculation model.

Fig. 5.
Fig. 5.

Simulations for the orientation process. (a) Energy density distribution for P1=25mW and P2=20mW at θ=0. (b) Energy density distribution along the axes of the probes projected onto the X coordinate. (c) Optical torques on the E. coli as a function of azimuthal angle θ. (d) Rotational potential energy U as a function of azimuthal θ.

Fig. 6.
Fig. 6.

Optical torque T and corresponding rotational potential energy U for E. coli as a function of the azimuthal angle θ with different D2 and input power. (a) Optical torque T with P1=25mW and P2=35mW. (b) Rotational potential energy U with P1=25mW and P2=35mW. (c) Optical torque T with P1=25mW and P2=15mW. (d) Rotational potential energy U with P1=25mW and P2=15mW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FO=S(TOn)dS,
T=ri×dFOi,

Metrics