Abstract

A novel fluorescence lifetime imaging microscopy (FLIM) working with deep UV 240–280 nm wavelength excitations has been developed. UV-FLIM is used for measurement of defect-related fluorescence and its changes upon annealing from femtosecond laser-induced modifications in fused silica. This FLIM technique can be used with microfluidic and biosamples to characterize temporal characteristics of fluorescence upon UV excitation, a capability easily added to a standard microscope-based FLIM. UV-FLIM was tested to show annealing of the defects induced by silica structuring with ultrashort laser pulses. Frequency-domain fluorescence measurements were converted into the time domain to extract long fluorescence lifetimes from defects in silica.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Excellent color rendering index and high quantum efficiency of rare-earth-free fluosilicate glass for single-phase white light phosphor

Ye Yuan, Ruilin Zheng, Qiang Lu, Weitao Zhang, Jiajin Zheng, and Wei Wei
Opt. Lett. 41(13) 3122-3125 (2016)

Label-free imaging of amyloids using their intrinsic linear and nonlinear optical properties

Patrik K. Johansson and Patrick Koelsch
Biomed. Opt. Express 8(2) 743-756 (2017)

Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić
Opt. Express 25(10) 11103-11123 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.
  2. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
    [Crossref]
  3. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
    [Crossref]
  4. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  5. K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
    [Crossref]
  6. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [Crossref]
  7. V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
    [Crossref]
  8. F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21, 15259–15267 (2013).
    [Crossref]
  9. E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
    [Crossref]
  10. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
    [Crossref]
  11. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
    [Crossref]
  12. K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).
    [Crossref]
  13. A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
    [Crossref]
  14. V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
    [Crossref]
  15. P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
    [Crossref]
  16. K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
    [Crossref]
  17. M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
    [Crossref]
  18. M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
    [Crossref]
  19. J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).
    [Crossref]
  20. R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).
    [Crossref]
  21. R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).
  22. G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).
  23. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref]
  24. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
    [Crossref]
  25. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
    [Crossref]
  26. R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3, 1674–1686 (2013).
    [Crossref]
  27. H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
    [Crossref]
  28. O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
    [Crossref]
  29. S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
    [Crossref]
  30. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
  31. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
    [Crossref]
  32. E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).
    [Crossref]
  33. S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
    [Crossref]
  34. P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
    [Crossref]
  35. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).
    [Crossref]
  36. M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
    [Crossref]
  37. S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
    [Crossref]
  38. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
    [Crossref]
  39. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
    [Crossref]
  40. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
    [Crossref]
  41. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [Crossref]
  42. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
    [Crossref]

2014 (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

2013 (6)

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[Crossref]

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[Crossref]

F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21, 15259–15267 (2013).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3, 1674–1686 (2013).
[Crossref]

2012 (3)

G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).

J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).
[Crossref]

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

2011 (6)

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

2009 (1)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

2008 (1)

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

2007 (2)

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).
[Crossref]

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

2006 (5)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

2005 (4)

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).
[Crossref]

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

2004 (2)

O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

2003 (2)

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

2002 (1)

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

2000 (3)

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

1999 (2)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

1992 (1)

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).
[Crossref]

1984 (1)

E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).
[Crossref]

Andolfo, A.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Bado, P.

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.

Bellouard, Y.

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
[Crossref]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.

Beresna, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Bhardwaj, V.

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

Bilenko, O.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Bilenko, Y.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Blandin, P.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Blasi, F.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Bressel, L.

Buividas, R.

Burgess, A.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Caiolfa, V. R.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Cheng, G.

Cheng, Y.

Chon, J. W. M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Clayton, A.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Clayton, A. H. A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).

Corkum, P.

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

de Ligny, D.

Deng, J.

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Digman, M. A.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Dobrinsky, A.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Dugan, M.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.

Efimov, O.

O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
[Crossref]

Elias, M. M.

Eliseev, P.

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

Fuchs, D.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Gamaly, E.

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Gamaly, E. E.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Gamaly, E. G.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

Gaska, I.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Gaska, R.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gervinskas, G.

G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).

Ghiggino, K. P.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).
[Crossref]

González, C.

R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).
[Crossref]

Gratton, E.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).
[Crossref]

Hall, R. D.

E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).
[Crossref]

Hallo, L.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Harris, M. R.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).
[Crossref]

Hartley, J. S.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Hashimoto, T.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Henderson, C.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

Hu, X.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Jameson, D. M.

E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).
[Crossref]

Jekel, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Judge, R. A.

R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3, 1674–1686 (2013).
[Crossref]

G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
[Crossref]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[Crossref]

Juršenas, S.

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Kabashin, A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Karimi, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

Katona, T.

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Kazansky, P.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Kitamura, K.

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

Kneissl, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Kolbe, T.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Krolikowski, W.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Krolikowski, W. Z.

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

Kubiliute, R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Kudryashov, I.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

Külberg, A.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Kurilcik, N.

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Lajevardipour, A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Lancry, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[Crossref]

Liao, Y.

Lipsz, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Lunev, A.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Luther-Davis, B.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

Madsen, C. D.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Malengo, G.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Malinauskas, M.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Marcinkevicius, A.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

Marrucci, L.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Martinez-Andrieux, V.

Matsuo, S.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[Crossref]

Maximova, K.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

McMartin, D. W.

K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[Crossref]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

Misawa, H.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[Crossref]

Mizeikis, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

Mohsin, A. S. M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Nagali, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

Nelson, K. Y.

K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[Crossref]

Nice, E.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Nicolai, P.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Nishii, J.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

Nishimura, K.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Ono, T.

K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[Crossref]

Orchard, S.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Piccirillo, B.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

Pliquett, U.

J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).
[Crossref]

Poumellec, B.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Rajeev, P.

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

Rayner, D.

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

Rekštyte, S.

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Rode, A. V.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

Rohrlack, T.

Rothacker, J.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Rotomskis, R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Runtz, K. J.

K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[Crossref]

Said, A.

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.

Sakai, S.

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

Santamsato, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

Schaap, A.

Sciarrino, F.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

Sentis, M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Shatalov, M.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Shur, M.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Sidenius, N.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Simova, E.

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

Slussarenko, S.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

Sonneville, C.

Spizzirri, P. G.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).
[Crossref]

Stoddart, P. R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).

Stoian, R.

Sudžius, M.

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

Sugahara, T.

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

Sugioka, K.

Sun, H. B.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

Sun, H.-B.

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[Crossref]

Sun, W.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Sutin, J.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Swift, K.

R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).
[Crossref]

Takahashi, M.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

Takekawa, S.

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Taylor, R.

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

Tikhonchuk, V.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Tokuda, Y.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

Tuzhilin, D.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

Umran, F. A.

Vanagas, E.

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

Vita, P.

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Walker, F.

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

Watanabe, M.

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[Crossref]

Wessels, J. T.

J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).
[Crossref]

Weyers, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Wouters, F. S.

J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).
[Crossref]

Würtele, M.

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

Yang, J.

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Yoko, T.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

Yong, J.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Yost, C. K.

K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[Crossref]

Zamai, M.

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

Zhang, J.

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Žukauskas, A.

G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Acta Crystallogr. Sect. D (1)

R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).
[Crossref]

Annu. Rev. Biophys. Bioeng. (1)

E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).
[Crossref]

Appl. Phys. A (2)

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

S. Juodkazis, V. Mizeikis, M. Sudžius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[Crossref]

Appl. Phys. Lett. (6)

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[Crossref]

E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethyl-methacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[Crossref]

P. Vita, N. Kurilčik, S. Juršėnas, A. Žukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[Crossref]

Appl. Surf. Sci. (1)

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[Crossref]

Biomed. Opt. Express (1)

Cytometry Part A (1)

J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).
[Crossref]

Environ. Sci. Pollut. Res. (1)

K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[Crossref]

Int. J. High Speed Electron. Syst. (1)

M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[Crossref]

Int. J. Nanomed. (1)

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

J. Biol. Chem. (1)

A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[Crossref]

J. Cell Biol. (1)

V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[Crossref]

J. Non-Cryst. Solids (1)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

J. Opt. (1)

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

J. Phys. Chem. (1)

H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[Crossref]

P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400  nm wavelength,” Jpn. J. Appl. Phys. 38, L839–L841 (1999).
[Crossref]

New J. Phys. (1)

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (2)

Phys. Rev. A (1)

O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
[Crossref]

Phys. Rev. B (2)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[Crossref]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Phys. Rev. Lett. (5)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Proc. AIP (1)

G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. Žukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012).

Prog. Quantum Electron. (2)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119–156 (2014).
[Crossref]

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).
[Crossref]

Water Res. (1)

M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[Crossref]

Other (1)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Realization of UV-FLIM with UV-LED emitting at 270 nm. Custom-designed LED controller (UV-jig) was synchronized with FLIM electronics. Samples used: cells, water-dissolved dyes in microfluidic capillary, laser-structured regions inside silica glass. Footprint of the LED (left) is 2mm×2mm.
Fig. 2.
Fig. 2. (Left to right) Fluorescence (false color) image after a long-pass filter λl=560nm; the excitation wavelength was λex=474nm. Cross-polarized images under white light illumination revealing the polarization converters of the topological charge ls=2q=4 (upper) and ls=1 (lower). Arrays of polarization converters 3×3 of different charges and with different orientations were recorded in a silica glass piece that forms the base of a microfluidic channel; the converters diameter is 600 μm.
Fig. 3.
Fig. 3. Emission spectra from the 270 nm LED with peak at 274 nm and its higher-order diffractions at 548 and 822 nm measured without microscope optics, emission of the same LED detected with FLIM microscope, and emission detected from the polarization converter in silica illuminated by the LED. The shaded region marks wavelengths blocked by the microscope optics. Inset shows a false color image (representing intensity) of LED taken with the FLIM setup.
Fig. 4.
Fig. 4. Absorbance, A, spectra of polarization converters as fabricated (at room temperature RT) and annealed at 300°C for 2 h; transmission T=10OD=eαd, where d is thickness and α (cm1) is the absorption coefficient. Spectral range is defined by FLIM microscope transmission band. Thickness of glass was d=1mm and optical thickness of nanogratings (polarization convertor) dc72μm (dashed-box encloser in the inset). The Rayleigh scattering spectral profile is given by λ4; R+T+A=1 with R accounting for reflection losses.
Fig. 5.
Fig. 5. (a) Phase shifted and modulated FLIM signals from the rhodamine (□) and polarization convertor (○). Phase shift Δϕ and change of modulation depth Δm are shown. The best fit to a sin function was used to extract the lifetime τ at a specific 0.1 MHz frequency. Fluorescence intensity error bars <5% were smaller than the marker size. (b) Phase and modulation data from polarization converter. Solid lines represent the best fit to a multiple lifetime model; this representation corresponds to the Fourier transform of the time-domain dependence given by Eq. (2).
Fig. 6.
Fig. 6. Multifrequency multiexponential fit of frequency domain FLIM (Fig. 5) using Eq. (2). (a) Fluorescence transients of polarization converter ls=2 annealed at different temperatures. Excitation wavelength is λex=474nm. (b) Fluorescence time decay under λex=270nm excitation. Rhodamine 6G showed a τ4ns decay. Polarization converter fluorescence was filtered by bandpass (650±20nm) and long-pass (560 nm) filters. The direct emission from LED 270 nm measured by FLIM is also presented.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B=Mcos(ϕ),A=Msin(ϕ).
Fluorescence(t)=i=1naiτietτi.

Metrics