Abstract

In this paper, an ultrathin metalens has been proposed based on a holographic metasurface that consists of elongated apertures in 40 nm gold film, which exhibit intriguing properties such as on- and off-axis focusing and also can concentrate light into multiple, discrete spots for circularly polarized incident lights. First, the spatial transmission phase distributions of the designed metalens with arbitrary focusing can be obtained by computer-generated holography. Then, the discrete phase distributions can be continuously encoded by subwavelength nanoapertures with spatially varying orientations in gold film. The simulation results show that our designed metalens can work efficiently for different types of focusing. Finally, our metasurface shows superior broadband characteristics between 670 and 810 nm, and the corresponding focal lengths of the designed lenses also can be efficiently modulated with the incident lights at different wavelengths.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonics metalens independent from the incident polarizations

Wei Wang, Zhongyi Guo, Rongzhen Li, Jingran Zhang, Yan Li, Yi Liu, Xinshun Wang, and Shiliang Qu
Opt. Express 23(13) 16782-16791 (2015)

Subdiffraction focusing lens based on quadrangular-frustum pyramid-shaped metasurface

Huaixin Li, Qi Zhang, Xue Jiang, Gaofeng Liang, Zhongquan Wen, Zhihai Zhang, Zhengguo Shang, and Gang Chen
Appl. Opt. 58(28) 7688-7692 (2019)

Ultra-thin, planar, broadband, dual-polarity plasmonic metalens

Wei Wang, Zhongyi Guo, Rongzhen Li, Jingran Zhang, Yi Liu, Xinshun Wang, and Shiliang Qu
Photon. Res. 3(3) 68-71 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
    [Crossref]
  2. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
    [Crossref]
  3. R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22, 27968–27975 (2014).
    [Crossref]
  4. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
  5. Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
    [Crossref]
  6. L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
    [Crossref]
  7. W. Wang, Z. Y. Guo, R. Z. Li, J. R. Zhang, Y. Liu, X. Wang, and S. L. Qu, “Ultra-thin, planar, broadband, dual-polarity plasmonic metalens,” Photon. Res. 3, 68–71 (2015).
    [Crossref]
  8. D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
    [Crossref]
  9. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
    [Crossref]
  10. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  11. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2, e72 (2013).
    [Crossref]
  12. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37, 4940–4942 (2012).
    [Crossref]
  13. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
    [Crossref]
  14. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
    [Crossref]
  15. S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar holographic metasurfaces for terahertz focusing,” Sci. Rep. 5, 7738 (2015).
    [Crossref]
  16. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
    [Crossref]
  17. R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics, Doi: 10.1007/s11468-015-9916-3 (in press).
  18. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  19. H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801 (2012).
    [Crossref]
  20. M. D. Huntington, L. J. Lauhon, and T. W. Odom, “Subwavelength lattice optics by evolutionary design,” Nano Lett. 14, 7195–7200 (2014).
    [Crossref]

2015 (3)

W. Wang, Z. Y. Guo, R. Z. Li, J. R. Zhang, Y. Liu, X. Wang, and S. L. Qu, “Ultra-thin, planar, broadband, dual-polarity plasmonic metalens,” Photon. Res. 3, 68–71 (2015).
[Crossref]

S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar holographic metasurfaces for terahertz focusing,” Sci. Rep. 5, 7738 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

2014 (5)

M. D. Huntington, L. J. Lauhon, and T. W. Odom, “Subwavelength lattice optics by evolutionary design,” Nano Lett. 14, 7195–7200 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
[Crossref]

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22, 27968–27975 (2014).
[Crossref]

2013 (5)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2, e72 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

2012 (5)

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37, 4940–4942 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801 (2012).
[Crossref]

2003 (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Astafev, M. A.

S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar holographic metasurfaces for terahertz focusing,” Sci. Rep. 5, 7738 (2015).
[Crossref]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Beruete, M.

S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar holographic metasurfaces for terahertz focusing,” Sci. Rep. 5, 7738 (2015).
[Crossref]

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref]

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Cai, B.

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Cheng, W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Cui, T. J.

Eriksen, R. L.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Feng, S.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Gao, J.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22, 27968–27975 (2014).
[Crossref]

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics, Doi: 10.1007/s11468-015-9916-3 (in press).

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Guo, F.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Guo, Z. Y.

Hao, J.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37, 4940–4942 (2012).
[Crossref]

Hu, D.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Huang, L.

Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Huntington, M. D.

M. D. Huntington, L. J. Lauhon, and T. W. Odom, “Subwavelength lattice optics by evolutionary design,” Nano Lett. 14, 7195–7200 (2014).
[Crossref]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2, e72 (2013).
[Crossref]

Jin, G.

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801 (2012).
[Crossref]

Kan, Q.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Kats, M.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2, e72 (2013).
[Crossref]

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Kuznetsov, S. A.

S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar holographic metasurfaces for terahertz focusing,” Sci. Rep. 5, 7738 (2015).
[Crossref]

Lauhon, L. J.

M. D. Huntington, L. J. Lauhon, and T. W. Odom, “Subwavelength lattice optics by evolutionary design,” Nano Lett. 14, 7195–7200 (2014).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Li, R. Z.

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37, 4940–4942 (2012).
[Crossref]

Li, Z.

Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Liu, J. L.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22, 27968–27975 (2014).
[Crossref]

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics, Doi: 10.1007/s11468-015-9916-3 (in press).

Liu, Y.

Lu, K.

Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
[Crossref]

Min, L.

Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Navarro-Cía, M.

S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar holographic metasurfaces for terahertz focusing,” Sci. Rep. 5, 7738 (2015).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2, e72 (2013).
[Crossref]

Nielsen, M. G.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref]

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Odom, T. W.

M. D. Huntington, L. J. Lauhon, and T. W. Odom, “Subwavelength lattice optics by evolutionary design,” Nano Lett. 14, 7195–7200 (2014).
[Crossref]

Peter, J. K.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Pors, A.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref]

Qiu, C. W.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

Qiu, M.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

Qu, S. L.

Scully, M.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2, e72 (2013).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Sun, W.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Sun, Y.

Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
[Crossref]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801 (2012).
[Crossref]

Thomas, Z.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Wang, W.

Wang, X.

W. Wang, Z. Y. Guo, R. Z. Li, J. R. Zhang, Y. Liu, X. Wang, and S. L. Qu, “Ultra-thin, planar, broadband, dual-polarity plasmonic metalens,” Photon. Res. 3, 68–71 (2015).
[Crossref]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Xiao, S.

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37, 4940–4942 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Yang, J. K. W.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

Ye, J.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, A. J.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22, 27968–27975 (2014).
[Crossref]

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics, Doi: 10.1007/s11468-015-9916-3 (in press).

Zhang, H.

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801 (2012).
[Crossref]

Zhang, J. R.

Zhang, L.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Zhang, Y.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37, 4940–4942 (2012).
[Crossref]

Zouhdi, S.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

Adv. Opt. Mater. (2)

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, J. K. Peter, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, F. Guo, W. Cheng, Z. Thomas, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Opt. Mater. 1, 517–521 (2013).
[Crossref]

Appl. Phys. Express (1)

Z. Li, L. Huang, K. Lu, Y. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7, 112001 (2014).
[Crossref]

Appl. Phys. Lett. (2)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Light Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2, e72 (2013).
[Crossref]

Nano Lett. (3)

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13, 829–834 (2013).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

M. D. Huntington, L. J. Lauhon, and T. W. Odom, “Subwavelength lattice optics by evolutionary design,” Nano Lett. 14, 7195–7200 (2014).
[Crossref]

Nanoscale (1)

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C. W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6, 12303–12309 (2014).
[Crossref]

Nat. Commun. (1)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426–431 (2012).
[Crossref]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Opt. Eng. (1)

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photon. Res. (1)

Sci. Rep. (1)

S. A. Kuznetsov, M. A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar holographic metasurfaces for terahertz focusing,” Sci. Rep. 5, 7738 (2015).
[Crossref]

Science (1)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Other (1)

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics, Doi: 10.1007/s11468-015-9916-3 (in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of holographic metasurface and focusing procedure. For LCP light incidence, the transmitting cross-polarized light (RCP) is focused into various points.
Fig. 2.
Fig. 2. Illustration of efficiency for one-pixel cell structure by numerical simulation. Amplitude as a function of wavelength.
Fig. 3.
Fig. 3. Transmitted RCP light is focused into a single spot. (a) Intensity distributions in the focal plane for LCP incidence at the wavelength of 740 nm. (b) Phase pattern of single spot. (c) Encoded aperture distribution according to the phase pattern in (b).
Fig. 4.
Fig. 4. Focusing performance of the holographic metasurface. (a) and (c) Intensity distributions of the single and two off-axis focusing in the focal planes, respectively. (b) and (d) Corresponding phase patterns.
Fig. 5.
Fig. 5. Multiple spot focusing performance of the holographic metasurface. (a) Intensity distributions of four spots focusing at the focal plane ( z = 4200 nm ). (b) Eight spot focusing performance.
Fig. 6.
Fig. 6. (a) and (c) Intensity distribution of single focusing spot at the focal plane for the incidence wavelength of 670 and 810 nm. (b) and (d) Corresponding lateral view in x o z plane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ ( x , y ) = 2 n π + 2 π λ ( f 2 + ( x 2 + y 2 ) f ) ,

Metrics