Abstract

An efficient method to mount a coupled silica microsphere and tapered fiber system is proposed and demonstrated experimentally. For the purpose of optomechanical studies, high-quality-factor optical (Qo108) and mechanical modes (Qm0.87×104) are maintained after the mounting process. For the mounted microsphere, the coupling system is more stable and compact and, thus, is beneficial for future studies and applications based on optomechanical interactions. Especially, the packaged optomechanical system, which is tested in a vacuum chamber, paves the way toward quantum optomechanics research in cryostat.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Chip-based silica microspheres for cavity optomechanics

Xuefeng Jiang, Min Wang, Mark C. Kuzyk, Thein Oo, Gui-Lu Long, and Hailin Wang
Opt. Express 23(21) 27260-27265 (2015)

Packaged microsphere-taper coupling system with a high Q factor

Yongchao Dong, Keyi Wang, and Xueying Jin
Appl. Opt. 54(2) 277-284 (2015)

Packaged silica microsphere-taper coupling system for robust thermal sensing application

Ying-Zhan Yan, Chang-Ling Zou, Shu-Bin Yan, Fang-Wen Sun, Zhe Ji, Jun Liu, Yu-Guang Zhang, Li Wang, Chen-Yang Xue, Wen-Dong Zhang, Zheng-Fu Han, and Ji-Jun Xiong
Opt. Express 19(7) 5753-5759 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  3. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
    [Crossref]
  4. A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
    [Crossref]
  5. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
    [Crossref]
  6. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  7. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [Crossref]
  8. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  9. C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
    [Crossref]
  10. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
    [Crossref]
  11. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
    [Crossref]
  12. G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
    [Crossref]
  13. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
    [Crossref]
  14. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
    [Crossref]
  15. C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
    [Crossref]
  16. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
    [Crossref]
  17. V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
    [Crossref]
  18. Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
    [Crossref]
  19. Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
    [Crossref]
  20. C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
    [Crossref]
  21. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  22. M. S. Murib, E. Yüce, O. Gürlü, and A. Serpengüzel, “Polarization behavior of elastic scattering from a silicon microsphere coupled to an optical fiber,” Photon. Res. 2, 45–50 (2014).
    [Crossref]
  23. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron. 12, 3–14 (2006).
    [Crossref]
  24. C.-L. Zou, F. J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21, 9982–9995 (2013).
    [Crossref]
  25. A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
    [Crossref]
  26. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z. F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19, 5753–5759 (2011).
    [Crossref]
  27. P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
    [Crossref]
  28. P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
    [Crossref]
  29. F. Vanier, Y.-A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
    [Crossref]
  30. Y.-C. Dong, K.-Y. Wang, and X.-Y. Jin, “Packaged microsphere-taper coupling system with a high Q factor,” Appl. Opt. 54, 277–284 (2015).
    [Crossref]
  31. F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
    [Crossref]
  32. Y.-S. Park, “Radiation pressure cooling of a silica optomechanical resonator,” Ph.D. thesis (University of Oregon, 2009).
  33. Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).
  34. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self stability of microcavities,” Opt. Express 12, 4742 (2004).
    [Crossref]
  35. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [Crossref]
  36. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
    [Crossref]
  37. R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).
    [Crossref]
  38. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
    [Crossref]
  39. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref]
  40. C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
    [Crossref]
  41. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17, 704–715 (1999).
    [Crossref]
  42. C.-H. Dong, C.-L. Zou, J.-M. Cui, Y. Yang, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
    [Crossref]

2015 (3)

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
[Crossref]

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Y.-C. Dong, K.-Y. Wang, and X.-Y. Jin, “Packaged microsphere-taper coupling system with a high Q factor,” Appl. Opt. 54, 277–284 (2015).
[Crossref]

2014 (4)

2013 (8)

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[Crossref]

V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).
[Crossref]

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

C.-L. Zou, F. J. Shu, F.-W. Sun, Z.-J. Gong, Z.-F. Han, and G.-C. Guo, “Theory of free space coupling to high-Q whispering gallery modes,” Opt. Express 21, 9982–9995 (2013).
[Crossref]

2012 (4)

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

2011 (4)

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z. F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19, 5753–5759 (2011).
[Crossref]

2010 (2)

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

2009 (4)

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

C.-H. Dong, C.-L. Zou, J.-M. Cui, Y. Yang, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
[Crossref]

2008 (4)

C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

2006 (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron. 12, 3–14 (2006).
[Crossref]

2005 (1)

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

2004 (2)

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self stability of microcavities,” Opt. Express 12, 4742 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

1999 (1)

1997 (1)

Anetsberger, G.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]

Arcizer, O.

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

Arcizet, O.

R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Barbour, R.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Birks, T. A.

Bo, L.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Brambilla, G.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Carmon, T.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self stability of microcavities,” Opt. Express 12, 4742 (2004).
[Crossref]

Chan, J.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chang, D. E.

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chen, Y.

Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).

Chen, Y.-L.

Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
[Crossref]

Cheung, G.

Cui, J.-M.

Davis, J. P.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Ding, M.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Dong, C.

Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).

Dong, C.-H.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
[Crossref]

V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

C.-H. Dong, C.-L. Zou, J.-M. Cui, Y. Yang, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
[Crossref]

C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
[Crossref]

Dong, Y.-C.

Doolin, P.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Eichenfield, M.

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Farrell, G.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Fiore, V.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
[Crossref]

V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Fredrick, A.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Friedlein, J.

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Gong, Q.-H.

Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
[Crossref]

Gong, Z.-J.

Gorodetsky, M. L.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

Gröblacher, S.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Guan, C.

Guo, G.

Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).

Guo, G.-C.

Gürlü, O.

Han, Z. F.

Han, Z.-F.

Hauer, B. D.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Haus, H. A.

Hewak, D.

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Hill, J. T.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron. 12, 3–14 (2006).
[Crossref]

Jacques, F.

Ji, Z.

Jin, X.-Y.

Kim, P. H.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Knight, J. C.

Kotthaus, J. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Krause, A.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Kuzyk, M. C.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
[Crossref]

V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Laine, J. P.

Lee, T.

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Lin, Q.

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Little, B. E.

Liu, J.

Liu, Y.-C.

Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

Luan, X.

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

MacDonald, A. J. R.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron. 12, 3–14 (2006).
[Crossref]

Mayer Alegre, T. P.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Monifi, F.

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Murib, M. S.

Murugan, G. S.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Ozdemir, S. K.

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Painter, O.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Park, Y.-S.

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

Y.-S. Park, “Radiation pressure cooling of a silica optomechanical resonator,” Ph.D. thesis (University of Oregon, 2009).

Peter, Y.-A.

Popowich, G. G.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Rivière, R.

R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]

Rochette, M.

Rojas, X.

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Rokhsari, H.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Safavi-Naeini, A. H.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Safavi-Naeini, H.

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Schliesser, A.

R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]

Serpengüzel, A.

Shen, Z.

Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).

Shu, F. J.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Sun, F.-W.

Swmwnova, Y.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Tian, L.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Unterreithmeier, Q. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self stability of microcavities,” Opt. Express 12, 4742 (2004).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Vanier, F.

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Wang, H.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
[Crossref]

V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

Wang, K.-Y.

Wang, L.

Wang, P.-F.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Weig, E. M.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

Winger, M.

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Wong, C.-W.

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

Wu, Q.

P.-F. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Swmwnova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref]

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Wu, X.-W.

Xiao, Y.-F.

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
[Crossref]

C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
[Crossref]

Xiong, J.-J.

Xue, C.-Y.

Yan, S.-B.

Yan, Y.-Z.

Yang, L.

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self stability of microcavities,” Opt. Express 12, 4742 (2004).
[Crossref]

Yang, Y.

Yu, X.-C.

Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
[Crossref]

Yüce, E.

Zhang, W.-D.

Zhang, Y.-G.

Zou, C.

Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).

Zou, C.-L.

Annalen der Physik (1)

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Annalen der Physik 527, 100–106 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P.-F. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Swmwnova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, “Packaged chalcogenide microsphere resonator with high Q-factor,” Appl. Phys. Lett. 102, 131110 (2013).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron. 12, 3–14 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

Nat. Nanotechnol. (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Nat. Photonics (1)

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[Crossref]

Nat. Phys. (4)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizer, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[Crossref]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

Nature (4)

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. A (3)

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013).
[Crossref]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82, 061804 (2010).
[Crossref]

V. Fiore, C.-H. Dong, M. C. Kuzyk, and H. Wang, “Optomechanical light storage in a silica microresonator,” Phys. Rev. A 87, 023812 (2013).
[Crossref]

Phys. Rev. Lett. (5)

Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q.-H. Gong, “Parametric down-conversion and polariton pair generation in optomechanical systems,” Phys. Rev. Lett. 111, 083601 (2013).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.-W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Rev. Sci. Instrum. (2)

R. Rivière, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat,” Rev. Sci. Instrum. 84, 043108 (2013).
[Crossref]

A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, “Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator,” Rev. Sci. Instrum. 86, 013107 (2015).
[Crossref]

Science (3)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref]

Other (2)

Y.-S. Park, “Radiation pressure cooling of a silica optomechanical resonator,” Ph.D. thesis (University of Oregon, 2009).

Y. Chen, Z. Shen, C. Dong, C. Zou, and G. Guo, “Mechanical bound state in the continuum for cavity optomechanics” (in preparation).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Experimental setup for the packaged microsphere. FPC, fiber polarization controller; PD, photodetector. (b)–(d) Illustration of the packaging process. (e) Typical packaged microsphere-taper coupling system. (Inset) SEM images of tapered fiber and digital image of the coupled silica microsphere and tapered fiber system.
Fig. 2.
Fig. 2. Numerical simulated mechanical dissipation due to fiber taper touched with the microsphere. Black and red dots correspond to two mechanical modes with lifted degeneracy due to taper fiber, as shown by the two inset figures. Dashed lines are fitting results.
Fig. 3.
Fig. 3. (a) Mechanical linewidth versus the tapered fiber diameter for three different samples before and after the touching, respectively. (b) and (c) Power spectrum of the mechanical vibrations before and after the touching for sample A, the position of which the tapered fiber diameter is about 800 nm. (d) and (e) Transmission spectrum of sample A before and after the touching at the same position as (b) and (c). These results were obtained under 1550 nm wavelength laser. Mechanical frequencies of the three samples are ω m / 2 π 62.2 MHz , 59.3 MHz, 57.6 MHz, respectively.
Fig. 4.
Fig. 4. (a) Touched mechanical Q factor of three samples at five positions in which the interval is roughly 100 μm of a typical 780 nm single-mode tapered fiber, respectively. (b) Mechanical Q factor of three samples versus the perpendicular distance between the equator of the microsphere and the tapered fiber. (Inset) Touched transmission spectrum of sample A excited by 780 nm laser. Dashed lines indicate untouched mechanical Q factor for guiding.
Fig. 5.
Fig. 5. (a) and (b) Power spectrum of the mechanical vibrations in atmospheric pressure and in a vacuum for the packaged microresonator system, respectively.

Metrics