Abstract

We propose and experimentally demonstrate a novel type of polarization rotator that is capable of rotating the polarization plane of a linearly polarized light at any desired angle in either broad or narrow spectral bandwidth. The rotator comprises an array of standard half-wave plates rotated at specific angles with respect to their fast-polarization axes. The performance of the rotator depends on the number of individual half-wave plates, and in this paper we experimentally investigate the performance of two composite rotators comprising 6 and 10 half-wave plates.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Broadband Faraday isolator

Michał Berent, Andon A. Rangelov, and Nikolay V. Vitanov
J. Opt. Soc. Am. A 30(1) 149-153 (2013)

Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic field

W. R. Trutna, D. K. Donald, and Moshe Nazarathy
Opt. Lett. 12(4) 248-250 (1987)

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Addison Wesley, 2002).
  2. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).
  3. D. Goldstein and E. Collett, Polarized Light (Marcel Dekker, 2003).
  4. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).
  5. F. J. Duarte, Tunable Laser Optics (Elsevier Academic, 2003).
  6. A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
    [Crossref]
  7. J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).
  8. T. Peters, S. S. Ivanov, D. Englisch, A. A. Rangelov, N. V. Vitanov, and T. Halfmann, “Variable ultrabroadband and narrowband composite polarization retarders,” Appl. Opt. 51, 7466–7474 (2012).
    [Crossref]
  9. E. Dimova, S. S. Ivanov, G. Popkirov, and N. V. Vitanov, “Highly efficient broadband polarization retarders and tunable polarization filters made of composite stacks of ordinary wave plates,” J. Opt. Soc. Am. A 31, 952–956 (2014).
    [Crossref]
  10. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).
  11. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).
  12. C. J. Koester, “Achromatic combinations of half-wave plates,” J. Opt. Soc. Am. 49, 405–409 (1959).
    [Crossref]
  13. A. M. Title, “Improvement of birefringent filters. 2: achromatic waveplates,” Appl. Opt. 14, 229–237 (1975).
    [Crossref]
  14. C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. 58, 1575–1580 (1968).
    [Crossref]
  15. A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
    [Crossref]

2015 (1)

A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
[Crossref]

2014 (1)

2012 (1)

2007 (1)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[Crossref]

2006 (1)

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).

1975 (1)

1968 (1)

1959 (1)

1955 (2)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).

Ardavan, A.

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[Crossref]

Azzam, M. A.

M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

Bashara, N. M.

M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).

Chang, J. K.

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).

Collett, E.

D. Goldstein and E. Collett, Polarized Light (Marcel Dekker, 2003).

Dimova, E.

Duarte, F. J.

F. J. Duarte, Tunable Laser Optics (Elsevier Academic, 2003).

Englisch, D.

Goldstein, D.

D. Goldstein and E. Collett, Polarized Light (Marcel Dekker, 2003).

Halfmann, T.

Harris, S. E.

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002).

Ivanov, S. S.

Kim, J. S.

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).

Koester, C. J.

Kyoseva, E.

A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
[Crossref]

McIntyre, C. M.

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).

Peters, T.

Popkirov, G.

Rangelov, A. A.

Title, A. M.

Vitanov, N. V.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).

Appl. Opt. (2)

J. Korean Phys. Soc. (1)

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

New J. Phys. (1)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[Crossref]

Opt. Commun. (1)

A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
[Crossref]

Proc. Indian Acad. Sci. (2)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).

Other (5)

E. Hecht, Optics (Addison Wesley, 2002).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).

D. Goldstein and E. Collett, Polarized Light (Marcel Dekker, 2003).

M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

F. J. Duarte, Tunable Laser Optics (Elsevier Academic, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. The source S, iris I, lens L1, lens L2, and polarizer P1 form a collimated beam of white polarized light. Polarizer P2 and lens L3 focus the beam of output light onto the entrance F of an optical fiber connected to a spectrometer. The two parts of the composite polarization rotator, which is constructed of a stack of multiple-order half-wave plates, are denoted as CPR1 and CPR2.

Fig. 2.
Fig. 2.

Measured transmittance for two different composite broadband rotators. The blue dashed line represents a rotator with six half-wave plates, while the red solid line represents a rotator with 10 half-wave plates. The black dash-dotted line represents a rotator comprising two half-wave plates for easy reference.

Fig. 3.
Fig. 3.

Measured transmittance for two different composite narrowband rotators. The blue dashed line represents a rotator with six half-wave plates, while the red solid line represents a rotator with 10 half-wave plates. The black dash-dotted line represents a rotator comprising two half-wave plates for easy reference.

Tables (1)

Tables Icon

Table 1. Calculated Angles (in Degrees) of the Optical Axes of the Individual Half-Wave Plates to Implement Composite Sequences of Broadband and Narrowband Half-Wave Plates

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Jθ(φ)=[cos(φ/2)isin(φ/2)e2iθisin(φ/2)e2iθcos(φ/2)],
J(N)=JθN(φ)JθN1(φ)Jθ1(φ).
BB: [φkJ(N)]φ=π=0(k=1,2,,N12),
NB:[φkJ(N)]φ=2π=0(k=1,2,,N12).

Metrics