Abstract

Chirped-pitch nanoscale circular surface-relief diffraction gratings were photoinscribed on thin films of a Disperse Red 1 functionalized material using a holographic technique. A truncated conical mirror splits and redirects a converging or diverging laser beam, resulting in an interference pattern of concentric circles with a chirped pitch that can be controlled by varying the wavefront curvature. The resulting circular gratings have a diameter of 12 mm and have the advantage of being produced in a fast, single-step procedure with no requirement for a master grating, photomask, or milling equipment.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass

James Leibold, Peter Snell, Olivier Lebel, and Ribal Georges Sabat
Opt. Lett. 39(12) 3445-3448 (2014)

Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films

Ribal Georges Sabat
Opt. Express 21(7) 8711-8723 (2013)

Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings

Erin Bailey and Ribal Georges Sabat
Opt. Express 25(6) 6904-6913 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Shellan, C. S. Hong, and A. Yariv, “Theory of chirped gratings in broad band filters,” Opt. Commun. 23, 398–400 (1977).
    [Crossref]
  2. A. Katzir, A. C. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13, 296–304 (1977).
    [Crossref]
  3. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976–983 (1989).
  4. S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Fractional axicon as a new type of diffractive optical element with conical focal region,” Precis. Instrum. Mechanol. 2, 132–143 (2013).
  5. P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
    [Crossref]
  6. C. Olson and D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
    [Crossref]
  7. K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21, 10121–10132 (2013).
    [Crossref]
  8. Y. Park and S. H. Choi, “Miniaturization of optical spectroscopes into Fresnel microspectrometers,” J. Nanophoton. 7, 077599 (2013).
    [Crossref]
  9. O. Barlev and M. A. Golub, “Resonance domain surface relief diffractive lens for the visible spectral region,” Appl. Opt. 52, 1531–1540 (2013).
  10. C. Yang, K. Shi, P. Edwards, and Z. Liu, “Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device,” Opt. Express 18, 23529–23534 (2010).
    [Crossref]
  11. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
    [Crossref]
  12. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. B 52, 163–182 (2014).
    [Crossref]
  13. T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14, 2203–2210 (2006).
    [Crossref]
  14. J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
    [Crossref]
  15. R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C 2, 841–847 (2014).

2014 (2)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. B 52, 163–182 (2014).
[Crossref]

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C 2, 841–847 (2014).

2013 (4)

O. Barlev and M. A. Golub, “Resonance domain surface relief diffractive lens for the visible spectral region,” Appl. Opt. 52, 1531–1540 (2013).

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21, 10121–10132 (2013).
[Crossref]

Y. Park and S. H. Choi, “Miniaturization of optical spectroscopes into Fresnel microspectrometers,” J. Nanophoton. 7, 077599 (2013).
[Crossref]

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Fractional axicon as a new type of diffractive optical element with conical focal region,” Precis. Instrum. Mechanol. 2, 132–143 (2013).

2011 (1)

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

2010 (1)

2007 (1)

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

2006 (1)

2000 (1)

C. Olson and D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[Crossref]

1996 (1)

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

1989 (1)

1977 (2)

J. B. Shellan, C. S. Hong, and A. Yariv, “Theory of chirped gratings in broad band filters,” Opt. Commun. 23, 398–400 (1977).
[Crossref]

A. Katzir, A. C. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13, 296–304 (1977).
[Crossref]

Adam, P.

Barlev, O.

Buralli, D. A.

Choi, S. H.

Y. Park and S. H. Choi, “Miniaturization of optical spectroscopes into Fresnel microspectrometers,” J. Nanophoton. 7, 077599 (2013).
[Crossref]

Chun, C.

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

Courjon, D.

Dambon, O.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

Dostálek, J.

Edwards, P.

Georgiadis, K.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

Golub, M. A.

Grosjean, T.

Hall, D. G.

C. Olson and D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[Crossref]

He, P.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

Homola, J.

Hong, C. S.

J. B. Shellan, C. S. Hong, and A. Yariv, “Theory of chirped gratings in broad band filters,” Opt. Commun. 23, 398–400 (1977).
[Crossref]

Jung, Y.

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

Katzir, A.

A. Katzir, A. C. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13, 296–304 (1977).
[Crossref]

Khonina, S. N.

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Fractional axicon as a new type of diffractive optical element with conical focal region,” Precis. Instrum. Mechanol. 2, 132–143 (2013).

Kim, D.

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

Kim, E.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

Kim, J. K.

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

Kirby, R.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C 2, 841–847 (2014).

Klocke, F.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

Knoll, W.

Lebel, O.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C 2, 841–847 (2014).

Lee, B. H.

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

Li, L.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

Liu, Z.

Livanos, A. C.

A. Katzir, A. C. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13, 296–304 (1977).
[Crossref]

Morris, G. M.

Nunzi, J.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C 2, 841–847 (2014).

Oh, K.

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

Olson, C.

C. Olson and D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[Crossref]

Park, Y.

Y. Park and S. H. Choi, “Miniaturization of optical spectroscopes into Fresnel microspectrometers,” J. Nanophoton. 7, 077599 (2013).
[Crossref]

Prentiss, M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. B 52, 163–182 (2014).
[Crossref]

Rogers, J. A.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

Rogers, J. R.

Sabat, R. G.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C 2, 841–847 (2014).

Shellan, J.

A. Katzir, A. C. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13, 296–304 (1977).
[Crossref]

Shellan, J. B.

J. B. Shellan, C. S. Hong, and A. Yariv, “Theory of chirped gratings in broad band filters,” Opt. Commun. 23, 398–400 (1977).
[Crossref]

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. B 52, 163–182 (2014).
[Crossref]

Shi, K.

Toma, K.

Ustinov, A. V.

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Fractional axicon as a new type of diffractive optical element with conical focal region,” Precis. Instrum. Mechanol. 2, 132–143 (2013).

Vala, M.

Volotovsky, S. G.

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Fractional axicon as a new type of diffractive optical element with conical focal region,” Precis. Instrum. Mechanol. 2, 132–143 (2013).

Wang, F.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

Whitesides, G. M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

Xia, Y.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

Yang, C.

Yariv, A.

J. B. Shellan, C. S. Hong, and A. Yariv, “Theory of chirped gratings in broad band filters,” Opt. Commun. 23, 398–400 (1977).
[Crossref]

A. Katzir, A. C. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13, 296–304 (1977).
[Crossref]

Yi, A.

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

Zhao, X. M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

C. Olson and D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[Crossref]

A. Katzir, A. C. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13, 296–304 (1977).
[Crossref]

J. Mater. Chem. C (1)

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C 2, 841–847 (2014).

J. Nanophoton. (1)

Y. Park and S. H. Choi, “Miniaturization of optical spectroscopes into Fresnel microspectrometers,” J. Nanophoton. 7, 077599 (2013).
[Crossref]

J. Opt. (1)

P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, F. Klocke, and A. Yi, “Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses,” J. Opt. 13, 085703 (2011).
[Crossref]

J. Polym. Sci. B (1)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci. B 52, 163–182 (2014).
[Crossref]

Opt. Commun. (1)

J. B. Shellan, C. S. Hong, and A. Yariv, “Theory of chirped gratings in broad band filters,” Opt. Commun. 23, 398–400 (1977).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

J. K. Kim, Y. Jung, B. H. Lee, K. Oh, C. Chun, and D. Kim, “Optical phase-front inscription over optical fiber end for flexible control of beam propagation and beam pattern in free space,” Opt. Fiber Technol. 13, 240–245 (2007).
[Crossref]

Precis. Instrum. Mechanol. (1)

S. N. Khonina, A. V. Ustinov, and S. G. Volotovsky, “Fractional axicon as a new type of diffractive optical element with conical focal region,” Precis. Instrum. Mechanol. 2, 132–143 (2013).

Science (1)

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 2.
Fig. 2.

Schematic demonstrating the optical geometry of the cross-section of a CDG.

Fig. 3.
Fig. 3.

Experimental setup for writing concentric chirped gratings using a CDG. a) If the point source is on the left sample film, then s is positive and the inscribing light is divergent. b) If a lens with a longer focal length is used to place the image of the point source on right of the CDG, then s is negative and the light is convergent.

Fig. 4.
Fig. 4.

Real-time diffraction efficiency of a chirped circular SRG as it is being inscribed in AZO glass. The inscribing laser with a measured irradiance of 1209mW/cm2 was turned on shortly after the 0 s mark and turned off after 700 s of exposure time. The small dip in diffraction efficiency after 700 s can be attributed to the turning off of the inscribing laser. It is possible that the subsequent rise in diffraction efficiency can be attributed to the relaxation of the AZO glass material after the inscribing laser was turned off.

Fig. 5.
Fig. 5.

AFM imagery at 1 mm from the edge of a circular SRG inscribed using a 28.9° CDG with a point source of inscribing light at s=10cm.

Fig. 6.
Fig. 6.

Theory and measurements for a circular SRG inscribed from a 28.9° CDG with diverging point source 3 cm away from sample.

Fig. 7.
Fig. 7.

Theory and measurements for a circular SRG inscribed from a 28.9° CDG with diverging point source 6 cm away from sample.

Fig. 8.
Fig. 8.

Theory and measurements for a circular SRG inscribed from a 28.9° CDG with diverging point source 9 cm away from sample.

Fig. 9.
Fig. 9.

Theory and measurements for a circular SRG inscribed from a 28.9° CDG with converging point source -10 cm away from sample. AFM measurements are not made for the values of δ smaller than 4 mm because the height h of the CDG prohibits the formation of grating lines in the center of the SRG, as discussed in Section 4.

Fig. 10.
Fig. 10.

Theory and measurements for a circular SRG inscribed from a 28.9° CDG with converging point source 20cm away from sample. AFM measurements are not made for the values of δ smaller than 3 mm because the height h of the CDG prohibits the formation of grating lines in the center of the SRG, as discussed in Section 4.

Fig. 11.
Fig. 11.

Dependence of grating pitch on distance from the center for 14 simulated circular SRGs inscribed with a 28.9° CDG using different distances to the point source of light s with a wavelength of 532 nm. A positive value of s denotes a divergent source while a negative value indicates a convergent source. As the distance to the point source increases, whether positive or negative, the slope of the grating approaches zero. Small absolute values of s result in steeper slopes and nonlinear curves. The grating pitch can be further controlled by changing the CDG angle θ or the wavelength of light λ. Curves are derived from a ray-trace computer simulation discussed in Section 2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(X,Y)=(2lcosθ,s2lsinθ),
X=mcos(2θ)+m+ssin(2θ),Y=scos(2θ)msin(2θ).
OPD(δ)=ρ2ρ2=(Xδ)2+Y2δ2+s2.
OPD(δ+Λ)OPD(δ)=λ.
h=mtan(2θ)tanθ.
hc=mcosθ(msin(2θ)scos(2θ))2mcosθ+sinθ.

Metrics