Abstract

Planar ring resonator waveguides are fabricated in thin films of As2S3 chalcogenide glass, deposited on silica-on-silicon substrates. Waveguide cores are directly written by scanning the focused illumination of a femtosecond Ti:sapphire laser at a central wavelength of 810 nm, through a two-photon photo-darkening process. A large photo-induced index change of 0.3–0.4 refractive index units is obtained. The radius of the ring resonator is 1.9 mm, corresponding to a transmission free spectral range of 9.1 GHz. A high loaded (intrinsic) Q value of 110,000 (180,000) is achieved. The thermal dependence of the resonator transfer function is characterized. The results provide the first report, to the best of our knowledge, of directly written high-Q ring resonators in chalcogenide glass films, and demonstrate the potential of this simple technique towards the fabrication of planar lightguide circuits in these materials.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing

Pan Ma, Duk-Yong Choi, Yi Yu, Zhiyong Yang, Khu Vu, Thach Nguyen, Arnan Mitchell, Barry Luther-Davies, and Steve Madden
Opt. Express 23(15) 19969-19979 (2015)

Vertically integrated As2S3 ring resonator on LiNbO3

Mehmet E. Solmaz, Donald B. Adams, Wee C. Tan, William T. Snider, and Christi K. Madsen
Opt. Lett. 34(11) 1735-1737 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. T. Kolomiets, “Vitreous semiconductors I,” Phys. Status Solidi 7, 359–372 (1964).
  2. B. T. Kolomiets, “Vitreous semiconductors II,” Phys. Status Solidi 7, 713–731 (1964).
  3. R. Frerichs, “New optical glasses with good transmission in the infrared,” J. Opt. Soc. Am. 43, 1153–1157 (1953).
    [Crossref]
  4. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, “Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching,” Opt. Lett. 29, 265–267 (2004).
    [Crossref]
  5. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
  6. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [Crossref]
  7. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (2006).
    [Crossref]
  8. J. D. Musgraves, K. Richardson, and H. Jain, “Laser-induced structural modification, its mechanisms, and applications in glassy optical materials,” Opt. Mater. Express 1, 921–935 (2011).
    [Crossref]
  9. V. I. Mikla, “Photoinduced structural changes and related phenomena in amorphous arsenic chalcogenides,” J. Phys. Condens. Matter 8, 429–448 (1996).
    [Crossref]
  10. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, and K. Richardson, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
    [Crossref]
  11. Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, and M. L. Trunov, “Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory,” J. Appl. Phys. 110, 063502 (2011).
    [Crossref]
  12. A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85, 4112–4115 (2000).
    [Crossref]
  13. M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, “Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films,” Appl. Phys. Lett. 96, 111908 (2010).
    [Crossref]
  14. M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, “Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films,” Appl. Phys. Lett. 97, 031905 (2010).
    [Crossref]
  15. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  16. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
    [Crossref]
  17. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22, 3–5 (2010).
  18. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. L. Davies, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640  Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
    [Crossref]
  19. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
    [Crossref]
  20. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonator,” Opt. Lett. 33, 761–763 (2008).
    [Crossref]
  21. Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).
  22. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
    [Crossref]
  23. K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, and K. Richardson, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, T. Li, ed., Vol. 45 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper IFH4.
  24. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).
  25. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
    [Crossref]
  26. S. Levy, V. Lyubin, M. Klebanov, J. Scheuer, and A. Zadok, “Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides,” Opt. Lett. 37, 5112–5114 (2012).
    [Crossref]
  27. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
    [Crossref]
  28. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31, 1860–1862 (2006).
    [Crossref]
  29. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17, 2247–2254 (2009).
    [Crossref]
  30. H. Park, J. P. Mack, D. J. Bluementhal, and J. E. Bowers, “An integrated recirculating optical buffer,” Opt. Express 16, 11124–11131 (2008).
    [Crossref]
  31. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  32. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
    [Crossref]
  33. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref]
  34. M. E. Solmaz, D. B. Adams, W. C. Tan, W. T. Snider, and C. K. Madsen, “Vertically integrated As2S3 ring resonator on LiNbO3,” Opt. Lett. 34, 1735–1737 (2009).
    [Crossref]
  35. I. Abdullhalim, M. Gelbaor, M. Klebanov, and V. Lyubin, “Photoinduced phenomena in nano-dimentional glassy As2S3 films,” Opt. Mater. Express 1, 1192–1201 (2011).
    [Crossref]
  36. B. Spektor, J. Shamir, V. Lyubin, and M. Klebanov, “Recording on As2S3 glassy films by pulsed and continuous illumination—optical evaluation and comparison,” Opt. Eng. 42, 3279–3284 (2003).
    [Crossref]
  37. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
    [Crossref]
  38. G. Pfeiffer, M. A. Paesler, and S. C. Agrawal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
    [Crossref]
  39. M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, and V. G. Ciorba, “Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films,” Proc. SPIE 6635, 663509 (2007).
  40. L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [Crossref]
  41. A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17, 1343–1348 (2000).
    [Crossref]
  42. G. Tao, “Multimaterial fibers in photonics and nanotechnology,” Ph.D. dissertation (University of Central Florida, 2014).

2014 (2)

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

2012 (1)

2011 (5)

2010 (4)

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22, 3–5 (2010).

M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, “Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films,” Appl. Phys. Lett. 96, 111908 (2010).
[Crossref]

M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, “Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films,” Appl. Phys. Lett. 97, 031905 (2010).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

2009 (3)

2008 (2)

2007 (5)

2006 (3)

E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (2006).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31, 1860–1862 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2004 (2)

2003 (2)

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

B. Spektor, J. Shamir, V. Lyubin, and M. Klebanov, “Recording on As2S3 glassy films by pulsed and continuous illumination—optical evaluation and comparison,” Opt. Eng. 42, 3279–3284 (2003).
[Crossref]

2001 (1)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

2000 (2)

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85, 4112–4115 (2000).
[Crossref]

A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17, 1343–1348 (2000).
[Crossref]

1999 (1)

1996 (1)

V. I. Mikla, “Photoinduced structural changes and related phenomena in amorphous arsenic chalcogenides,” J. Phys. Condens. Matter 8, 429–448 (1996).
[Crossref]

1991 (1)

G. Pfeiffer, M. A. Paesler, and S. C. Agrawal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[Crossref]

1964 (2)

B. T. Kolomiets, “Vitreous semiconductors I,” Phys. Status Solidi 7, 359–372 (1964).

B. T. Kolomiets, “Vitreous semiconductors II,” Phys. Status Solidi 7, 713–731 (1964).

1953 (1)

Abdullhalim, I.

Adams, D. B.

Adibi, A.

Agarwal, A.

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Agrawal, S. C.

G. Pfeiffer, M. A. Paesler, and S. C. Agrawal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

Allen, P. J.

Anheier, N. C.

Armani, M.

M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Baker, N. J.

Beke, D. L.

Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, and M. L. Trunov, “Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory,” J. Appl. Phys. 110, 063502 (2011).
[Crossref]

Birkmire, R.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Bluementhal, D. J.

Bowers, J. E.

Bruneel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Bulla, D.

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22, 3–5 (2010).

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
[Crossref]

Cardenas, J.

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Carlie, N.

Charnovych, S.

Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, and M. L. Trunov, “Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory,” J. Appl. Phys. 110, 063502 (2011).
[Crossref]

Choi, D. Y.

Choi, D.-Y.

Ciorba, V. G.

M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, and V. G. Ciorba, “Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films,” Proc. SPIE 6635, 663509 (2007).

Clausen, A. T.

Cohen, O.

Colomeico, E. P.

M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, and V. G. Ciorba, “Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films,” Proc. SPIE 6635, 663509 (2007).

Couzi, M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Davies, B. L.

Dobson, K. D.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Du, Q.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Dyachyns’ka, O. M.

M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, “Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films,” Appl. Phys. Lett. 96, 111908 (2010).
[Crossref]

M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, “Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films,” Appl. Phys. Lett. 97, 031905 (2010).
[Crossref]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Eggleton, B. J.

Elliot, S. R.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Ewen, P. J. S.

E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (2006).
[Crossref]

Fang, W.

Finsterbusch, K.

Firth, A. P.

E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (2006).
[Crossref]

Flagan, R. C.

M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Fraser, S. E.

M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Frerichs, R.

Fu, L.

Gai, X.

Galili, M.

Galstian, T.

Galstian, T. V.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85, 4112–4115 (2000).
[Crossref]

Galstyan, T. V.

Gelbaor, M.

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Han, T.

Harea, D. V.

M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, and V. G. Ciorba, “Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films,” Proc. SPIE 6635, 663509 (2007).

Hô, N.

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonator,” Opt. Lett. 33, 761–763 (2008).
[Crossref]

Iovu, M. A.

M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, and V. G. Ciorba, “Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films,” Proc. SPIE 6635, 663509 (2007).

Iovu, M. S.

M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, and V. G. Ciorba, “Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films,” Proc. SPIE 6635, 663509 (2007).

Jain, H.

Jeppesen, P.

Jones, R.

Kaganovskii, Y.

Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, and M. L. Trunov, “Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory,” J. Appl. Phys. 110, 063502 (2011).
[Crossref]

Kimerling, L.

Kitao, M.

Klebanov, M.

Kokenyesi, S.

Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, and M. L. Trunov, “Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory,” J. Appl. Phys. 110, 063502 (2011).
[Crossref]

Kolomiets, B. T.

B. T. Kolomiets, “Vitreous semiconductors I,” Phys. Status Solidi 7, 359–372 (1964).

B. T. Kolomiets, “Vitreous semiconductors II,” Phys. Status Solidi 7, 713–731 (1964).

Krishnaswami, K.

Kulkarni, R. P.

M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Lamont, M. R. E.

Laniel, J. M.

K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, and K. Richardson, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, T. Li, ed., Vol. 45 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper IFH4.

LaRochelle, S.

Le Foulgoc, K.

Levy, S.

Li, L.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Li, Q.

Lin, H.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Lipson, M.

L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Lopez, C.

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, and K. Richardson, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
[Crossref]

K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, and K. Richardson, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, T. Li, ed., Vol. 45 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper IFH4.

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Luan, F.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22, 3–5 (2010).

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. L. Davies, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640  Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
[Crossref]

Luo, L. W.

Luther-Davies, B.

Lytvyn, P. M.

M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, “Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films,” Appl. Phys. Lett. 96, 111908 (2010).
[Crossref]

M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, “Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films,” Appl. Phys. Lett. 97, 031905 (2010).
[Crossref]

Lyubin, V.

Mack, J. P.

Madden, S.

Madden, S. J.

Madsen, C. K.

Maeda, S.

Mikla, V. I.

V. I. Mikla, “Photoinduced structural changes and related phenomena in amorphous arsenic chalcogenides,” J. Phys. Condens. Matter 8, 429–448 (1996).
[Crossref]

Minakata, M.

Moreel, L.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Moss, D. J.

Mulvad, H. C. H.

Musgraves, J. D.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

J. D. Musgraves, K. Richardson, and H. Jain, “Laser-induced structural modification, its mechanisms, and applications in glassy optical materials,” Opt. Mater. Express 1, 921–935 (2011).
[Crossref]

Myers, T. L.

Nagy, P. M.

M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, “Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films,” Appl. Phys. Lett. 96, 111908 (2010).
[Crossref]

Nguyen, H. C.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Ogbuu, O.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Ogusu, K.

Owen, E.

E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (2006).
[Crossref]

Oxenløwe, L. K.

Paesler, M. A.

G. Pfeiffer, M. A. Paesler, and S. C. Agrawal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

Paniccia, M. J.

Park, H.

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Pelusi, M.

Pelusi, M. D.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22, 3–5 (2010).

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
[Crossref]

Petit, L.

Pfeiffer, G.

G. Pfeiffer, M. A. Paesler, and S. C. Agrawal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

Phillips, M. C.

Poitras, C.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Prasad, A.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Qiao, H.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Raday, O.

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

J. D. Musgraves, K. Richardson, and H. Jain, “Laser-induced structural modification, its mechanisms, and applications in glassy optical materials,” Opt. Mater. Express 1, 921–935 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonator,” Opt. Lett. 33, 761–763 (2008).
[Crossref]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, and K. Richardson, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
[Crossref]

A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17, 1343–1348 (2000).
[Crossref]

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
[Crossref]

K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, and K. Richardson, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, T. Li, ed., Vol. 45 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper IFH4.

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Richardson, M.

Riley, B. J.

Rivero, C.

Rode, A.

Rode, A. V.

Saliminia, A.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Scheuer, J.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Schulte, A.

Shamir, J.

B. Spektor, J. Shamir, V. Lyubin, and M. Klebanov, “Recording on As2S3 glassy films by pulsed and continuous illumination—optical evaluation and comparison,” Opt. Eng. 42, 3279–3284 (2003).
[Crossref]

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Snider, W. T.

Solmaz, M. E.

Soltani, M.

Spektor, B.

B. Spektor, J. Shamir, V. Lyubin, and M. Klebanov, “Recording on As2S3 glassy films by pulsed and continuous illumination—optical evaluation and comparison,” Opt. Eng. 42, 3279–3284 (2003).
[Crossref]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[Crossref]

Ta’eed, V.

Ta’eed, V. G.

Tan, W. C.

Tao, G.

G. Tao, “Multimaterial fibers in photonics and nanotechnology,” Ph.D. dissertation (University of Central Florida, 2014).

Trunov, M. L.

Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, and M. L. Trunov, “Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory,” J. Appl. Phys. 110, 063502 (2011).
[Crossref]

M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, “Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films,” Appl. Phys. Lett. 96, 111908 (2010).
[Crossref]

M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, “Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films,” Appl. Phys. Lett. 97, 031905 (2010).
[Crossref]

Turcotte, K.

K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, and K. Richardson, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, T. Li, ed., Vol. 45 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper IFH4.

Vahala, K. J.

M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Van Stryland, E.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Villeneuve, A.

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85, 4112–4115 (2000).
[Crossref]

A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17, 1343–1348 (2000).
[Crossref]

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
[Crossref]

K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, and K. Richardson, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, T. Li, ed., Vol. 45 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper IFH4.

Wang, R.

Wiederhecker, G. S.

Xu, J.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Yamasaki, J.

Yegnanarayanan, S.

Zadok, A.

Zakery, A.

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Zhang, D.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Zhou, J.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Zou, Y.

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Zoubir, A.

Adv. Opt. Mater. (1)

Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate,” Adv. Opt. Mater. 2, 478–486 (2014).

Appl. Phys. Lett. (2)

M. L. Trunov, P. M. Lytvyn, P. M. Nagy, and O. M. Dyachyns’ka, “Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films,” Appl. Phys. Lett. 96, 111908 (2010).
[Crossref]

M. L. Trunov, P. M. Lytvyn, and O. M. Dyachyns’ka, “Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films,” Appl. Phys. Lett. 97, 031905 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22, 3–5 (2010).

J. Appl. Phys. (1)

Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, and M. L. Trunov, “Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory,” J. Appl. Phys. 110, 063502 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (2)

A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

G. Pfeiffer, M. A. Paesler, and S. C. Agrawal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

J. Phys. Condens. Matter (1)

V. I. Mikla, “Photoinduced structural changes and related phenomena in amorphous arsenic chalcogenides,” J. Phys. Condens. Matter 8, 429–448 (1996).
[Crossref]

J. Phys. E (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[Crossref]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Eng. (1)

B. Spektor, J. Shamir, V. Lyubin, and M. Klebanov, “Recording on As2S3 glassy films by pulsed and continuous illumination—optical evaluation and comparison,” Opt. Eng. 42, 3279–3284 (2003).
[Crossref]

Opt. Express (8)

L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
[Crossref]

W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[Crossref]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17, 2247–2254 (2009).
[Crossref]

H. Park, J. P. Mack, D. J. Bluementhal, and J. E. Bowers, “An integrated recirculating optical buffer,” Opt. Express 16, 11124–11131 (2008).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. L. Davies, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640  Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
[Crossref]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
[Crossref]

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Opt. Lett. (6)

Opt. Mater. (Amsterdam) (1)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. (Amsterdam) 17, 379–386 (2001).

Opt. Mater. Express (2)

Philos. Mag. B (1)

E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett. 85, 4112–4115 (2000).
[Crossref]

Phys. Status Solidi (2)

B. T. Kolomiets, “Vitreous semiconductors I,” Phys. Status Solidi 7, 359–372 (1964).

B. T. Kolomiets, “Vitreous semiconductors II,” Phys. Status Solidi 7, 713–731 (1964).

Proc. SPIE (1)

M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, and V. G. Ciorba, “Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films,” Proc. SPIE 6635, 663509 (2007).

Science (1)

M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Other (2)

K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, and K. Richardson, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, T. Li, ed., Vol. 45 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper IFH4.

G. Tao, “Multimaterial fibers in photonics and nanotechnology,” Ph.D. dissertation (University of Central Florida, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic illustration of the layer structure of samples used in this work and an illustration of the transverse profile of photo-induced refractive index changes in the core As2S3 glass layer.

Fig. 2.
Fig. 2.

Schematic illustration of the setup used in measurements of the photo-induced refractive index change in As2S3 films.

Fig. 3.
Fig. 3.

Top: OVA measurements of the transmission of light through the layers of a silica-on-silicon sample coated with an As2S3 film (see Fig. 2). The red (blue) curve corresponds to a region outside (within) a photo-darkened area. Bottom: spectral offset in nanometers between peaks of maximum transmission outside and within the photo-darkened area. The linearly increasing offset corresponds to an increase in the refractive index within the photo-darkened region by 0.4 RIU.

Fig. 4.
Fig. 4.

Calculated effective indices (red) and group indices (blue) of the fundamental modes of directly written waveguides in As2S3 thin films, as a function of the photo-induced refractive index change in the core region . Solid (dashed) lines correspond to the TM (TE) mode.

Fig. 5.
Fig. 5.

Top-view microscope image of parts of bus and ring waveguides, directly written in a thin layer of As2S3.

Fig. 6.
Fig. 6.

Top view of a ring resonator waveguide, directly written in an As2S3 thin film. Red light is coupled from a tapered fiber for illustration purposes only.

Fig. 7.
Fig. 7.

OVA measurement of the temporal impulse response of a ring resonator of 1.888 mm radius, directly written in a thin film of As2S3.

Fig. 8.
Fig. 8.

Top: OVA measurement of the spectral power transfer function of a ring resonator of 1.888 mm radius, directly written in a thin film of As2S3. Bottom: magnified view of a single transmission notch, with a FWHM of 0.014 nm.

Fig. 9.
Fig. 9.

OVA measurements of the spectral power transfer function of a ring resonator of 1.888 mm radius, at several temperatures (in °C, see legend). The resonance wavelengths are offset by 0.022 nm/°C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ(FSR)(2FSR02/λ02)dChΔn.
Qint=2Qloaded/(1+ER1)=180,000,
α=(2πng)/(Qintλ0)=2.7dB/cm,
dλr/dT=(αT+nT/ng)λr,

Metrics