Abstract

We demonstrate binary phase shift keying (BPSK) modulation using a silicon Mach–Zehnder modulator with a π-phase-shift voltage (Vπ) of 4.5V. The single-drive push–pull traveling wave electrode has been optimized using numerical simulations with a 3 dB electro-optic bandwidth of 35 GHz. The 32 Gb/s BPSK constellation diagram is measured with an error vector magnitude of 18.9%.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator

Yanyang Zhou, Linjie Zhou, Haike Zhu, Chiyan Wong, Yida Wen, Lei Liu, Xinwan Li, and Jianping Chen
Photon. Res. 4(4) 153-161 (2016)

High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators

Po Dong, Long Chen, and Young-kai Chen
Opt. Express 20(6) 6163-6169 (2012)

Low-voltage high-speed coupling modulation in silicon racetrack ring resonators

Rui Yang, Linjie Zhou, Haike Zhu, and Jianping Chen
Opt. Express 23(22) 28993-29003 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Yang and J. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” IEEE J. Lightwave Technol. 32, 966–970 (2014).
  2. X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Integrated silicon modulator based on microring array assisted MZI,” Opt. Express 22, 10550–10558 (2014).
    [Crossref]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
  4. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
    [Crossref]
  5. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
    [Crossref]
  6. M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20, 10591–10596 (2012).
    [Crossref]
  7. T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, and H. Wu, “Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator,” Opt. Express 22, 19818–19823 (2014).
    [Crossref]
  8. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
    [Crossref]
  9. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21, 9722–9733 (2013).
    [Crossref]
  10. A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “30-Gbps silicon microring modulator for short- and medium-reach optical interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.4.
  11. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21, 11869–11876 (2013).
    [Crossref]
  12. H. Xu, X. Li, X. Xiao, P. Zhou, Z. Li, J. Yu, and Y. Yu, “High-speed silicon modulator with band equalization,” Opt. Lett. 39, 4839–4842 (2014).
    [Crossref]
  13. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
    [Crossref]
  14. T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21, 23410–23415 (2013).
    [Crossref]
  15. H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.
  16. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
    [Crossref]
  17. Y. Zhou, L. Zhou, X. Sun, and J. Chen, “Design of traveling wave electrode for high-speed silicon modulators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS3B.2.
  18. H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” IEEE J. Lightwave Technol. 30, 1602–1609 (2012).
  19. P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
    [Crossref]

2014 (4)

2013 (5)

2012 (4)

2010 (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).

2009 (1)

2008 (1)

Akiyama, S.

Assefa, S.

Baba, T.

Baehr-Jones, T.

Barwicz, T.

Bogaerts, W.

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” IEEE J. Lightwave Technol. 30, 1602–1609 (2012).

Bouville, D.

Brimont, A.

Cassan, E.

Chee, E. K. S.

Chen, H.

Chen, J.

Y. Zhou, L. Zhou, X. Sun, and J. Chen, “Design of traveling wave electrode for high-speed silicon modulators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS3B.2.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Chen, L.

Chen, Y.

Chu, T.

Crozat, P.

Cui, K.

Ding, J.

Ding, R.

Dong, F.

Dong, P.

Dumon, P.

Faralli, S.

A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “30-Gbps silicon microring modulator for short- and medium-reach optical interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.4.

Fedeli, J. M.

Fédéli, J. M.

Feng, X.

Gambini, F.

A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “30-Gbps silicon microring modulator for short- and medium-reach optical interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.4.

Gardes, F. Y.

Green, W. M. J.

Hirayama, N.

Hochberg, M.

Horikawa, T.

Huang, Y.

Imai, M.

Ji, R.

Klamkin, J.

A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “30-Gbps silicon microring modulator for short- and medium-reach optical interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.4.

Krauss, T. F.

Laval, S.

Li, T.

Li, X.

Li, Z.

H. Xu, X. Li, X. Xiao, P. Zhou, Z. Li, J. Yu, and Y. Yu, “High-speed silicon modulator with band equalization,” Opt. Lett. 39, 4839–4842 (2014).
[Crossref]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
[Crossref]

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Lim, A. E. J.

Liu, F.

Liu, L.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Liu, Y.

Lo, P. G.

Long, Q.

Lu, Y.

Lyan, P.

Ma, Y.

Malacarne, A.

A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “30-Gbps silicon microring modulator for short- and medium-reach optical interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.4.

Marris-Morini, D.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).

Min, R.

Noguchi, Y.

Novack, A.

O’Faolain, L.

Pan, H.

Poon, J. K. S.

Potì, L.

A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “30-Gbps silicon microring modulator for short- and medium-reach optical interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.4.

Rasigade, G.

Reed, G. T.

Sacher, W. D.

Sanchis, P.

Shank, S. M.

Streshinsky, M.

Sun, X.

Y. Zhou, L. Zhou, X. Sun, and J. Chen, “Design of traveling wave electrode for high-speed silicon modulators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS3B.2.

Takahashi, H.

Tan, W.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).

Tian, Y.

Tu, X.

Usuki, T.

Vivien, L.

Vlasov, Y. A.

Wang, D.

Wang, J.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Wang, T.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Wang, X.

Wu, H.

Wu, Q.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Xiao, X.

Xie, A.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Xu, H.

Yang, L.

Yang, R.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Yang, Y.

Yi, H.

Yu, H.

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” IEEE J. Lightwave Technol. 30, 1602–1609 (2012).

Yu, J.

Yu, Y.

Zhang, F.

Zhang, J.

Zhang, L.

Zhou, L.

Y. Zhou, L. Zhou, X. Sun, and J. Chen, “Design of traveling wave electrode for high-speed silicon modulators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS3B.2.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Zhou, P.

Zhou, Y.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Y. Zhou, L. Zhou, X. Sun, and J. Chen, “Design of traveling wave electrode for high-speed silicon modulators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS3B.2.

Zhou, Z.

Zhu, H.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

Zhu, W.

Ziebell, M.

IEEE J. Lightwave Technol. (2)

L. Yang and J. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” IEEE J. Lightwave Technol. 32, 966–970 (2014).

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” IEEE J. Lightwave Technol. 30, 1602–1609 (2012).

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).

Opt. Express (12)

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
[Crossref]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[Crossref]

M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20, 10591–10596 (2012).
[Crossref]

T. Li, D. Wang, J. Zhang, Z. Zhou, F. Zhang, X. Wang, and H. Wu, “Demonstration of 6.25 Gbaud advanced modulation formats with subcarrier multiplexed technique on silicon Mach-Zehnder modulator,” Opt. Express 22, 19818–19823 (2014).
[Crossref]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
[Crossref]

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21, 9722–9733 (2013).
[Crossref]

X. Li, X. Feng, K. Cui, F. Liu, and Y. Huang, “Integrated silicon modulator based on microring array assisted MZI,” Opt. Express 22, 10550–10558 (2014).
[Crossref]

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21, 11869–11876 (2013).
[Crossref]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
[Crossref]

T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21, 23410–23415 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref]

Opt. Lett. (1)

Other (3)

Y. Zhou, L. Zhou, X. Sun, and J. Chen, “Design of traveling wave electrode for high-speed silicon modulators,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper AS3B.2.

H. Zhu, L. Zhou, L. Liu, T. Wang, Y. Zhou, J. Wang, Q. Wu, A. Xie, R. Yang, Z. Li, X. Li, and J. Chen, “Single-drive push-pull silicon Mach-Zehnder modulator for OOK and BPSK modulation,” in OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 174–175.

A. Malacarne, F. Gambini, S. Faralli, J. Klamkin, and L. Potì, “30-Gbps silicon microring modulator for short- and medium-reach optical interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic structure of the BSPK modulator. (b) Cross section of modulation arms showing the single-drive TWE. (c) Equivalent circuit model of the TWE.
Fig. 2.
Fig. 2. Simulation results of MZI-1. (a) EE and EO S21 responses. (b) Z0 and neff versus RF frequency.
Fig. 3.
Fig. 3. Effects of various TWE parameters: (a) WE, (b) SE, (c) Wn, (d) Wp, (e) Sdop, and (f) Svia on RF attenuation, Z0, and neff.
Fig. 4.
Fig. 4. Simulation results of MZI-2. (a) EE and EO S21 responses. (b) Z0 and neff versus RF frequency.
Fig. 5.
Fig. 5. Measured optical transmission spectra under various bias voltages.
Fig. 6.
Fig. 6. Measured (a) S21 and (b) S11 responses of MZI-2 with DC bias voltage varying from 0 to 4V.
Fig. 7.
Fig. 7. (a) Measured BPSK signal eye diagram. (b) Measured BPSK constellation diagram. The signal data rate is 32 Gb/s.

Tables (1)

Tables Icon

Table 1. TWE Parameters of BPSK Modulators

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f3dB=0.18(neffn0)l,

Metrics