Abstract

A tunable plasmonic perfect absorber with a tuning range of 650nm is realized by introducing a 20 nm thick phase-change material Ge2Sb2Te5 layer into the metal–dielectric–metal configuration. The absorption at the plasmonic resonance is kept above 0.96 across the whole tuning range. In this work we study this extraordinary optical response numerically and reveal the geometric conditions which support this phenomenon. This work shows a promising route to achieve tunable plasmonic devices for multi-band optical modulation, communication, and thermal imaging.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid phase-change plasmonic crystals for active tuning of lattice resonances

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk'yanchuk, S. A. Maier, and M. H. Hong
Opt. Express 21(11) 13691-13698 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  3. H. Zhou, F. Ding, Y. Jin, and S. He, “Terahertz metamaterial modulators based on absorption,” Prog. Electromagn. Res. 119, 449–460 (2011).
    [Crossref]
  4. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
    [Crossref]
  5. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref]
  6. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012).
    [Crossref]
  7. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref]
  8. M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [Crossref]
  9. S. Dai, D. Zhao, Q. Li, and M. Qiu, “Double-sided polarization-independent plasmonic absorber at near-infrared region,” Opt. Express 21, 13125–13133 (2013).
    [Crossref]
  10. J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
    [Crossref]
  11. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
    [Crossref]
  12. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
    [Crossref]
  13. Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
    [Crossref]
  14. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
    [Crossref]
  15. T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B 30, 1580–1585 (2013).
    [Crossref]
  16. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
  17. N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
    [Crossref]
  18. N. Yamada, “Development of materials for third generation optical storage media,” in Phase Change Materials: Science and Applications, S. Raoux and M. Wuttig, eds. (Springer, 2009), Chap. 10, pp. 199–226.
  19. N. Yamada, “Origin, secret, and application of the ideal phase-change material GeSbTe,” Phys. Status Solidi B 249, 1837–1842 (2012).
    [Crossref]
  20. Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
    [Crossref]
  21. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 of Academic Press Handbook Series (Academic, 1985).
  22. J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
    [Crossref]
  23. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
    [Crossref]
  24. U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron Devices 54, 2769–2777 (2007).
    [Crossref]
  25. N. V. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt. 46, 4065–4072 (2007).
    [Crossref]
  26. M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, “Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model,” Opt. Express 21, 16455–16465 (2013).
    [Crossref]
  27. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201–1209 (2013).
    [Crossref]
  28. D. Zhu, M. Bosman, and J. K. W. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22, 9809–9819 (2014).
    [Crossref]

2014 (4)

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).

D. Zhu, M. Bosman, and J. K. W. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22, 9809–9819 (2014).
[Crossref]

2013 (6)

2012 (5)

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

N. Yamada, “Origin, secret, and application of the ideal phase-change material GeSbTe,” Phys. Status Solidi B 249, 1837–1842 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

2011 (3)

H. Zhou, F. Ding, Y. Jin, and S. He, “Terahertz metamaterial modulators based on absorption,” Prog. Electromagn. Res. 119, 449–460 (2011).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

2009 (1)

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

2007 (2)

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron Devices 54, 2769–2777 (2007).
[Crossref]

N. V. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt. 46, 4065–4072 (2007).
[Crossref]

1998 (1)

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Akahira, N.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Baek, S. H.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Bhaskaran, H.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Bosman, M.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Buchwald, W.

Cao, T.

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Chen, S.

Chen, Y. G.

Chen, Z.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201–1209 (2013).
[Crossref]

Cryan, M. J.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Da, S.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Dai, S.

Diem, M.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Ding, F.

H. Zhou, F. Ding, Y. Jin, and S. He, “Terahertz metamaterial modulators based on absorption,” Prog. Electromagn. Res. 119, 449–460 (2011).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201–1209 (2013).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Guo, J.

Hao, Q.

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

H. Zhou, F. Ding, Y. Jin, and S. He, “Terahertz metamaterial modulators based on absorption,” Prog. Electromagn. Res. 119, 449–460 (2011).
[Crossref]

Hendrickson, J.

Henning, T.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Ho, G. W.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Hokmabadi, M. P.

Hong, M.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Hong, M. H.

Hosseini, P.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Huang, T. J.

Ielmini, D.

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron Devices 54, 2769–2777 (2007).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

H. Zhou, F. Ding, Y. Jin, and S. He, “Terahertz metamaterial modulators based on absorption,” Prog. Electromagn. Res. 119, 449–460 (2011).
[Crossref]

Jing, Y.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Juarez, L. F.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Kang, T. D.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Kang, Y. S.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Kao, T. S.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Kawahara, K.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Khang, Y. H.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Khoo, I.-C.

Kim, C. K.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Kim, K. J.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Kim, S. M.

Kiraly, B.

Koschny, T.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

Kung, P.

Lacaita, A.

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron Devices 54, 2769–2777 (2007).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lee, H.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Lee, T. Y.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

Li, Q.

Li, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Lin, Y.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Long, Y.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Luk’yanchuk, B.

Luo, F.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Luo, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Luo, X. G.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Maier, S. A.

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201–1209 (2013).
[Crossref]

Matsunaga, T.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Miyagawa, N.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201–1209 (2013).
[Crossref]

Ng, B.

Ohta, H.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Otoba, M.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 of Academic Press Handbook Series (Academic, 1985).

Park, J. W.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Qiu, M.

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

Russo, U.

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron Devices 54, 2769–2777 (2007).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

Simpson, R. E.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Soref, R.

Soukoulis, C.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Suh, D. S.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Teng, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Videen, G.

Voshchinnikov, N. V.

Wei, C.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
[Crossref]

Wei, S. H.

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wen, Q.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Wilbert, D. S.

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Wuttig, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Yamada, N.

N. Yamada, “Origin, secret, and application of the ideal phase-change material GeSbTe,” Phys. Status Solidi B 249, 1837–1842 (2012).
[Crossref]

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

N. Yamada, “Development of materials for third generation optical storage media,” in Phase Change Materials: Science and Applications, S. Raoux and M. Wuttig, eds. (Springer, 2009), Chap. 10, pp. 199–226.

Yang, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Yang, J. K. W.

Yang, Q.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Zhang, B.

Zhang, H.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Zhang, L.

Zhang, P.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Zhao, D.

Zhao, Y.

Zhou, H.

H. Zhou, F. Ding, Y. Jin, and S. He, “Terahertz metamaterial modulators based on absorption,” Prog. Electromagn. Res. 119, 449–460 (2011).
[Crossref]

Zhu, D.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. W. Park, S. H. Baek, T. D. Kang, H. Lee, Y. S. Kang, T. Y. Lee, D. S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, L. F. Juarez, S. Da, and S. H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett. 93, 021914 (2008).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (1)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201–1209 (2013).
[Crossref]

IEEE Trans. Electron Devices (1)

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron Devices 54, 2769–2777 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45, 235106 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys. 37, 2104–2110 (1998).
[Crossref]

Light Sci. Appl. (1)

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3, e185 (2014).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Nature (2)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Phys. Status Solidi B (1)

N. Yamada, “Origin, secret, and application of the ideal phase-change material GeSbTe,” Phys. Status Solidi B 249, 1837–1842 (2012).
[Crossref]

Prog. Electromagn. Res. (1)

H. Zhou, F. Ding, Y. Jin, and S. He, “Terahertz metamaterial modulators based on absorption,” Prog. Electromagn. Res. 119, 449–460 (2011).
[Crossref]

Sci. Rep. (1)

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 of Academic Press Handbook Series (Academic, 1985).

N. Yamada, “Development of materials for third generation optical storage media,” in Phase Change Materials: Science and Applications, S. Raoux and M. Wuttig, eds. (Springer, 2009), Chap. 10, pp. 199–226.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic drawing of the tunable perfect absorber structure. GST phase-change thin film is sandwiched between the Au disk array and the SiO2 insulating layer. Broadband plane wave polarized in x-axis is normally incident on the Au disk array. Au disks have a diameter of 300 nm and a thickness of 20 nm. GST layer is 20 nm thick.
Fig. 2.
Fig. 2. Absorption spectra of the tunable perfect absorber in a variety of crystallization levels between the amorphous phase (0%) and crystalline phase (100%).
Fig. 3.
Fig. 3. (a) Enhancement of electric field intensity at the second peak in the xy cross section at 10 nm above the GST layer; (b) enhancement of electric field intensity at the second peak in the xz cross section along the diameter of the disk; (c) enhancement of magnetic field intensity at the second peak in the xz cross section along the diameter of the disk. Main panels are extracted from the structure with 0% crystallized GST. Insets, corresponding near-field enhancements at the first peak.
Fig. 4.
Fig. 4. Maximum absorption at the second peak and the quality factor of the second peak as functions of crystallization level.
Fig. 5.
Fig. 5. 2D color maps present the absorption at the plasmonic resonance as functions of lattice constant (x-axis) and the thickness of SiO2 layer (y-axis) for the following; (a) amorphous GST; (b) crystalline GST.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϵeff(λ)1ϵeff(λ)+2=m×ϵc(λ)1ϵc(λ)+2+(1m)×ϵa(λ)1ϵa(λ)+2,

Metrics