Abstract

We propose and experimentally demonstrate compact on-chip 1×2 wavelength selective switches (WSSs) based on silicon microring resonators (MRRs) with nested pairs of subrings (NPSs). Owing to the resonance splitting induced by the inner NPSs, the proposed devices are capable of performing selective channel routing at certain resonance wavelengths of the outer MRRs. System demonstration of dynamic channel routing using fabricated devices with one and two NPSs is carried out for 10Gb/s non-return-to-zero signal. The experimental results verify the effectiveness of the fabricated devices as compact on-chip WSSs.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Integrated silicon photonic wavelength-selective switch using wavefront control waveguides

Fumi Nakamura, Kyosuke Muramatsu, Keijiro Suzuki, Ken Tanizawa, Minoru Ohtsuka, Nobuyuki Yokoyama, Kazuyuki Matsumaro, Miyoshi Seki, Keiji Koshino, Kazuhiro Ikeda, Shu Namiki, Hitoshi Kawashima, and Hiroyuki Tsuda
Opt. Express 26(10) 13573-13589 (2018)

Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators

Li Liu, Jianji Dong, and Xinliang Zhang
Opt. Express 23(16) 21414-21423 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
    [Crossref]
  2. N. Kataoka, N. Wada, K. Sone, Y. Aoki, H. Miyata, H. Onaka, and K. Kitayama, “Field trial of data-granularity-flexible reconfigurable OADM with wavelength–packet-selective switch,” J. Lightwave Technol. 24, 88–94 (2006).
    [Crossref]
  3. J. Rhee, I. Tomkos, and M. Li, “A broadcast-and-select OADM optical network with dedicated optical-channel protection,” J. Lightwave Technol. 21, 25–31 (2003).
    [Crossref]
  4. E. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615–626 (2006).
    [Crossref]
  5. R. Shankar, M. Florjanczyk, T. Hall, A. Vukovic, and H. Hua, “Multi-degree ROADM based on wavelength selective switches: architectures and scalability,” Opt. Commun. 279, 94–100 (2007).
    [Crossref]
  6. G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
    [Crossref]
  7. D. Marom, D. Neilson, D. Greywall, C. Pai, N. Basavanhally, V. Aksyuk, D. López, F. Pardo, M. Simon, Y. Low, P. Kolodner, and C. Bolle, “Wavelength-selective 1×K switches using free-space optics and MEMS micromirrors: theory, design, and implementation,” J. Lightwave Technol. 23, 1620–1630 (2005).
    [Crossref]
  8. B. Fracasso, J. Tocnaye, M. Razzak, and C. Uche, “Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch,” J. Lightwave Technol. 21, 2405–2411 (2003).
    [Crossref]
  9. J. Ertel, R. Helbing, C. Hoke, O. Landolt, K. Nishimura, P. Robrish, and R. Trutna, “Design and performance of a reconfigurable liquid-crystal-based optical add/drop multiplexer,” J. Lightwave Technol. 24, 1674–1680 (2006).
    [Crossref]
  10. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
    [Crossref]
  11. M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
    [Crossref]
  12. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
    [Crossref]
  13. C. Doerr, L. Buhl, L. Chen, and N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Proc. OFC (2011), paper PDPC4.
  14. Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. Express 16, 535–548 (2008).
    [Crossref]
  15. Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 5900514 (2014).
    [Crossref]
  16. P. Dong, S. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15, 9600–9605 (2007).
    [Crossref]
  17. Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
    [Crossref]
  18. L. Zhang, M. Song, T. Wu, L. Zou, R. Beausoleil, and A. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33, 1978–1980 (2008).
    [Crossref]
  19. X. Zhou, L. Zhang, A. Armani, R. Beausoleil, A. Willner, and W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21, 20179–20186 (2013).
    [Crossref]
  20. L. Barea, F. Vallini, G. de Rezende, and N. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photon. J. 5, 2202717 (2013).
    [Crossref]
  21. L. Barea, F. Vallini, P. Jarschel, and N. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103, 201102 (2013).
    [Crossref]
  22. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, “Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt. Express 16, 4621–4630 (2008).
    [Crossref]
  23. M. Souza, L. Barea, F. Vallini, G. Rezende, G. Wiederhecker, and N. Frateschi, “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22, 10430–10438 (2014).
    [Crossref]
  24. J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.
  25. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
    [Crossref]
  26. J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
    [Crossref]
  27. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15, 9194–9204 (2007).
    [Crossref]

2014 (2)

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 5900514 (2014).
[Crossref]

M. Souza, L. Barea, F. Vallini, G. Rezende, G. Wiederhecker, and N. Frateschi, “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22, 10430–10438 (2014).
[Crossref]

2013 (4)

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

X. Zhou, L. Zhang, A. Armani, R. Beausoleil, A. Willner, and W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21, 20179–20186 (2013).
[Crossref]

L. Barea, F. Vallini, G. de Rezende, and N. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photon. J. 5, 2202717 (2013).
[Crossref]

L. Barea, F. Vallini, P. Jarschel, and N. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103, 201102 (2013).
[Crossref]

2012 (1)

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

2010 (1)

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[Crossref]

2008 (3)

2007 (3)

2006 (4)

N. Kataoka, N. Wada, K. Sone, Y. Aoki, H. Miyata, H. Onaka, and K. Kitayama, “Field trial of data-granularity-flexible reconfigurable OADM with wavelength–packet-selective switch,” J. Lightwave Technol. 24, 88–94 (2006).
[Crossref]

J. Ertel, R. Helbing, C. Hoke, O. Landolt, K. Nishimura, P. Robrish, and R. Trutna, “Design and performance of a reconfigurable liquid-crystal-based optical add/drop multiplexer,” J. Lightwave Technol. 24, 1674–1680 (2006).
[Crossref]

E. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615–626 (2006).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

2005 (2)

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

D. Marom, D. Neilson, D. Greywall, C. Pai, N. Basavanhally, V. Aksyuk, D. López, F. Pardo, M. Simon, Y. Low, P. Kolodner, and C. Bolle, “Wavelength-selective 1×K switches using free-space optics and MEMS micromirrors: theory, design, and implementation,” J. Lightwave Technol. 23, 1620–1630 (2005).
[Crossref]

2004 (1)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

2003 (3)

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]

Aksyuk, V.

Aoki, Y.

Armani, A.

Avrahami, Y.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Baets, R.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Barbastathis, G.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Barea, L.

M. Souza, L. Barea, F. Vallini, G. Rezende, G. Wiederhecker, and N. Frateschi, “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22, 10430–10438 (2014).
[Crossref]

L. Barea, F. Vallini, G. de Rezende, and N. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photon. J. 5, 2202717 (2013).
[Crossref]

L. Barea, F. Vallini, P. Jarschel, and N. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103, 201102 (2013).
[Crossref]

Basavanhally, N.

Basch, E.

E. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615–626 (2006).
[Crossref]

Beausoleil, R.

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Bolle, C.

Buhl, L.

C. Doerr, L. Buhl, L. Chen, and N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Proc. OFC (2011), paper PDPC4.

Cao, P.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Cappuzzo, M.

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

Chen, E.

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

Chen, L.

C. Doerr, L. Buhl, L. Chen, and N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Proc. OFC (2011), paper PDPC4.

Dainese, M.

de Rezende, G.

L. Barea, F. Vallini, G. de Rezende, and N. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photon. J. 5, 2202717 (2013).
[Crossref]

Doerr, C.

C. Doerr, L. Buhl, L. Chen, and N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Proc. OFC (2011), paper PDPC4.

Dong, P.

Dumon, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Dupuis, N.

C. Doerr, L. Buhl, L. Chen, and N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Proc. OFC (2011), paper PDPC4.

Earnshaw, M.

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

Egorov, R.

E. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615–626 (2006).
[Crossref]

Elby, S.

E. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615–626 (2006).
[Crossref]

Ertel, J.

Feng, S.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 5900514 (2014).
[Crossref]

Florjanczyk, M.

R. Shankar, M. Florjanczyk, T. Hall, A. Vukovic, and H. Hua, “Multi-degree ROADM based on wavelength selective switches: architectures and scalability,” Opt. Commun. 279, 94–100 (2007).
[Crossref]

Fracasso, B.

Frateschi, N.

M. Souza, L. Barea, F. Vallini, G. Rezende, G. Wiederhecker, and N. Frateschi, “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22, 10430–10438 (2014).
[Crossref]

L. Barea, F. Vallini, G. de Rezende, and N. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photon. J. 5, 2202717 (2013).
[Crossref]

L. Barea, F. Vallini, P. Jarschel, and N. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103, 201102 (2013).
[Crossref]

Fridman, M.

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Gaeta, A.

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Goebuchi, Y.

Gomez, L.

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

Greywall, D.

Griffin, A.

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

Gringeri, S.

E. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615–626 (2006).
[Crossref]

Hall, T.

R. Shankar, M. Florjanczyk, T. Hall, A. Vukovic, and H. Hua, “Multi-degree ROADM based on wavelength selective switches: architectures and scalability,” Opt. Commun. 279, 94–100 (2007).
[Crossref]

Haus, H.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Helbing, R.

Hibino, Y.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

Himeno, A.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

Hisada, M.

Hoke, C.

Hu, X.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Hua, H.

R. Shankar, M. Florjanczyk, T. Hall, A. Vukovic, and H. Hua, “Multi-degree ROADM based on wavelength selective switches: architectures and scalability,” Opt. Commun. 279, 94–100 (2007).
[Crossref]

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Jarschel, P.

L. Barea, F. Vallini, P. Jarschel, and N. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103, 201102 (2013).
[Crossref]

Jiang, L.

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Jiang, X.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Kataoka, N.

Kato, T.

Kitayama, K.

Kokubun, Y.

Kolodner, P.

Kuzucu, O.

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Landolt, O.

Laskowski, E.

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

Li, F.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

Li, M.

Li, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 5900514 (2014).
[Crossref]

Lipson, M.

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

P. Dong, S. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15, 9600–9605 (2007).
[Crossref]

López, D.

Lopez-Royo, F.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Low, Y.

Luo, L.

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Marom, D.

Miyata, H.

Mizuno, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

Neilson, D.

Nielson, G.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Nishimura, K.

Oguma, M.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

Onaka, H.

Pai, C.

Pan, T.

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Pang, W.

Pardo, F.

Poon, A. W.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 5900514 (2014).
[Crossref]

L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15, 9194–9204 (2007).
[Crossref]

Preble, S.

Qiu, M.

Rakich, P.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Razzak, M.

Rezende, G.

Rhee, J.

Robrish, P.

Seneviratne, D.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Shankar, R.

R. Shankar, M. Florjanczyk, T. Hall, A. Vukovic, and H. Hua, “Multi-degree ROADM based on wavelength selective switches: architectures and scalability,” Opt. Commun. 279, 94–100 (2007).
[Crossref]

Shibata, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

Simon, M.

Sone, K.

Song, M.

Souza, M.

Strasser, T.

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[Crossref]

Su, Y.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Suzuki, K.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Takahashi, H.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

Tocnaye, J.

Tomkos, I.

Trutna, R.

Tuller, H.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Uche, C.

Vallini, F.

M. Souza, L. Barea, F. Vallini, G. Rezende, G. Wiederhecker, and N. Frateschi, “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22, 10430–10438 (2014).
[Crossref]

L. Barea, F. Vallini, G. de Rezende, and N. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photon. J. 5, 2202717 (2013).
[Crossref]

L. Barea, F. Vallini, P. Jarschel, and N. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103, 201102 (2013).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Vukovic, A.

R. Shankar, M. Florjanczyk, T. Hall, A. Vukovic, and H. Hua, “Multi-degree ROADM based on wavelength selective switches: architectures and scalability,” Opt. Commun. 279, 94–100 (2007).
[Crossref]

Wada, N.

Wagener, J.

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[Crossref]

Wang, T.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

Watts, M.

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Wen, Y.

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Wiaux, V.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Wiederhecker, G.

Willner, A.

Wong-Foy, A.

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

Wosinski, L.

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Wu, J.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Wu, T.

Xu, M.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]

Zhang, L.

Zhang, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 5900514 (2014).
[Crossref]

Zhang, Z.

Zhou, L.

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15, 9194–9204 (2007).
[Crossref]

Zhou, X.

Zou, L.

Appl. Phys. Lett. (1)

L. Barea, F. Vallini, P. Jarschel, and N. Frateschi, “Silicon technology compatible photonic molecules for compact optical signal processing,” Appl. Phys. Lett. 103, 201102 (2013).
[Crossref]

Electron. Lett. (1)

M. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, “Highly-integrated planar lightwave circuit wavelength selective switch,” Electron. Lett. 39, 1397–1398 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
[Crossref]

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 5900514 (2014).
[Crossref]

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[Crossref]

E. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615–626 (2006).
[Crossref]

IEEE Photon. J. (1)

L. Barea, F. Vallini, G. de Rezende, and N. Frateschi, “Spectral engineering with CMOS compatible SOI photonic molecules,” IEEE Photon. J. 5, 2202717 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]

J. Wu, P. Cao, X. Hu, T. Wang, M. Xu, X. Jiang, F. Li, L. Zhou, and Y. Su, “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett. 25, 580–583 (2013).
[Crossref]

G. Nielson, D. Seneviratne, F. Lopez-Royo, P. Rakich, Y. Avrahami, M. Watts, H. Haus, H. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1×N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 16, 1480–1482 (2004).
[Crossref]

J. Lightwave Technol. (5)

Opt. Commun. (1)

R. Shankar, M. Florjanczyk, T. Hall, A. Vukovic, and H. Hua, “Multi-degree ROADM based on wavelength selective switches: architectures and scalability,” Opt. Commun. 279, 94–100 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Y. Wen, O. Kuzucu, M. Fridman, A. Gaeta, L. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108, 223907 (2012).
[Crossref]

Other (2)

C. Doerr, L. Buhl, L. Chen, and N. Dupuis, “Monolithic gridless 1 × 2 wavelength-selective switch in silicon,” in Proc. OFC (2011), paper PDPC4.

J. Wu, T. Pan, P. Cao, X. Hu, L. Jiang, X. Jiang, and Y. Su, “Compact wavelength blocker based on silicon microring resonator with nested pair of subrings,” in Proc. OECC/ACOFT (2014), paper TU4E-2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic configuration of the proposed MRR with one NPS. (b) Zoom-in view of NPS marked with dashed box in (a).
Fig. 2.
Fig. 2. (a) Normalized transmission spectrum from IN to OUT1. (b) Normalized transmission spectrum from IN to OUT2. (c) Zoom-in view of (a) and (b) in the wavelength range of 1551.8–1555.8 nm.
Fig. 3.
Fig. 3. Micrograph of the fabricated devices with (a) one and (b) two NPSs.
Fig. 4.
Fig. 4. (a) Measured transmission spectrum from IN to OUT2 of the fabricated device with one NPS. (b) Zoom-in spectrum around one split resonance at λ1 in (a) fitted by the dashed curve calculated from Eqs. (1) and (2). (c)–(f) Measured transmission spectra from IN to OUT1 when the power applied to the microheater is 0.0, 5.8, 11.1, and 16.1 mW, respectively.
Fig. 5.
Fig. 5. Measured transmission spectra from IN to OUT1 of the fabricated device with two NPSs when the power applied to the microheater along one of the two NPSs is (a) 0.0, (b) 4.5, (c) 8.8, (d) 13.0, (e) 17.0, and (f) 20.7 mW, respectively.
Fig. 6.
Fig. 6. Experimental setup for system demonstration of dynamic channel routing using the fabricated device. VOA, variable optical attenuator.
Fig. 7.
Fig. 7. Eye diagrams of 10Gb/s NRZ signal output from (a-I) OUT1 and (a-II) OUT2 of the fabricated device with one NPS at wavelengths of λ1λ4 when the heating power is 0.0, 5.8, 11.1, and 16.1 mW, respectively. Eye diagrams of 10Gb/s NRZ signal output from (b-I) OUT1 and (b-II) OUT2 of the fabricated device with two NPSs at wavelengths of λ1λ6 when the heating power is 0.0, 4.5, 8.8, 13.0, 17.0, and 20.7 mW, respectively.
Fig. 8.
Fig. 8. BER curves measured with the fabricated devices with (a) one and (b) two NPSs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

TOUT1=Aκ12eiΦ/2MT[1Ar12eiΦ(MT2MD2)]12Ar12eiΦ+A2r14e2iΦ(MT2MD2)2,
TOUT2=r1[12AeiΦ+A2r12e2iΦ(MT2MD2)2]12Ar12eiΦ+A2r14e2iΦ(MT2MD2)2,
MT=r2[1(r22+1)aeiφ+a2e2iφ]12ar22eiφ+a2r22e2iφ,
MD=iaκ23eiφ12ar22eiφ+a2r22e2iφ.

Metrics