Abstract

We report, for the first time to our knowledge, an on-chip mode-locked laser diode (OCMLLD) that employs multimode interference reflectors to eliminate the need of facet mirrors to form the cavity. The result is an OCMLLD that does not require cleaved facets to operate, enabling us to locate this OCMLLD at any location within the photonic chip. This OCMLLD provides a simple source of optical pulses that can be inserted within a photonic integrated circuit chip for subsequent photonic signal processing operations within the chip (modulation, optical filtering, pulse rate multiplication, and so on). The device was designed using standardized building blocks of a generic active/passive InP technology platform, fabricated in a multi-project wafer run, and achieved mode-locking operation at its fundamental frequency, given the uncertainty at the design step of the optical length of these mirrors, critical to achieve colliding pulse mode-locked operation.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
On-Chip Colliding Pulse Mode-locked laser diode (OCCP-MLLD) using multimode interference reflectors

Carlos Gordón, Robinson Guzmán, Vinicio Corral, Xaveer Leijtens, and Guillermo Carpintero
Opt. Express 23(11) 14666-14676 (2015)

Femtosecond pulse and terahertz two-tone generation from facet-free multi-segment laser diode in InP-based generic foundry platform

Mu-Chieh Lo, Robinson Guzmán, and Guillermo Carpintero
Opt. Express 26(14) 18386-18398 (2018)

All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber

Tao Chen, Qiaoli Zhang, Yaping Zhang, Xin Li, Haikun Zhang, and Wei Xia
Photon. Res. 6(11) 1033-1039 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).
  2. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
    [Crossref]
  3. X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).
  4. L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photon. Technol. Lett. 23, 1064–1066 (2011).
    [Crossref]
  5. J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.
  6. S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).
  7. J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86  GHz,” Appl. Phys. Lett. 63, 1598–1600 (1993).
    [Crossref]
  8. H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.
  9. M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
    [Crossref]
  10. L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19, 1100808 (2013).
    [Crossref]
  11. E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31, 3055–3063 (2013).
    [Crossref]
  12. J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), 2011 and 23rd International Conference on Indium Phosphide and Related Materials (2011), pp. 1–4.
  13. L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.
  14. D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051–1058 (1995).
    [Crossref]
  15. T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
    [Crossref]
  16. http://www.smartphotonics.nl/
  17. K. Merghem, A. Akrout, A. Martinez, G. Moreau, J.-P. Tourrenc, F. Lelarge, F. Van Dijk, G.-H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16, 10675–10683 (2008).
    [Crossref]

2013 (2)

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19, 1100808 (2013).
[Crossref]

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31, 3055–3063 (2013).
[Crossref]

2011 (3)

M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
[Crossref]

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photon. Technol. Lett. 23, 1064–1066 (2011).
[Crossref]

2008 (1)

2004 (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

1997 (1)

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[Crossref]

1995 (1)

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051–1058 (1995).
[Crossref]

1993 (1)

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86  GHz,” Appl. Phys. Lett. 63, 1598–1600 (1993).
[Crossref]

Accard, A.

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

Akbar, J.

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Akrout, A.

Ambrosius, H.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
[Crossref]

Aubin, G.

Barbarin, Y.

Barbet, S.

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

Bente, E.

M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
[Crossref]

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

Bolk, J.

Bryce, A. C.

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photon. Technol. Lett. 23, 1064–1066 (2011).
[Crossref]

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Caldwell, R. B.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Cao, H.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Carroll, J. E.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051–1058 (1995).
[Crossref]

Chimot, N.

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

de Vries, T.

M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
[Crossref]

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Deng, H.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Docter, B.

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Duan, G.-H.

Dylewicz, R.

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Eliseev, P. G.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Gray, A. L.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Grote, N.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

Guo, X.

X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).

Haji, M.

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19, 1100808 (2013).
[Crossref]

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photon. Technol. Lett. 23, 1064–1066 (2011).
[Crossref]

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Hohimer, J. P.

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86  GHz,” Appl. Phys. Lett. 63, 1598–1600 (1993).
[Crossref]

Hou, L.

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19, 1100808 (2013).
[Crossref]

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photon. Technol. Lett. 23, 1064–1066 (2011).
[Crossref]

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Jones, D. J.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051–1058 (1995).
[Crossref]

Joshi, S.

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

Karouta, F.

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Kelly, A. E.

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Kleijn, E.

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31, 3055–3063 (2013).
[Crossref]

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), 2011 and 23rd International Conference on Indium Phosphide and Related Materials (2011), pp. 1–4.

Leijtens, X.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
[Crossref]

Leijtens, X. J. M.

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31, 3055–3063 (2013).
[Crossref]

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), 2011 and 23rd International Conference on Indium Phosphide and Related Materials (2011), pp. 1–4.

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Lelarge, F.

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J.-P. Tourrenc, F. Lelarge, F. Van Dijk, G.-H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16, 10675–10683 (2008).
[Crossref]

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

Lester, L. F.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Ling, H.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Liu, C.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Marcenac, D. D.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051–1058 (1995).
[Crossref]

Marsh, J. H.

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19, 1100808 (2013).
[Crossref]

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Martinez, A.

Merghem, K.

Moreau, G.

Ogura, I.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[Crossref]

Olle, V. F.

X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).

Osinski, M.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Penty, R. V.

X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).

Qiu, B.

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photon. Technol. Lett. 23, 1064–1066 (2011).
[Crossref]

Quarterman, A. H.

X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).

Ramdane, A.

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J.-P. Tourrenc, F. Lelarge, F. Van Dijk, G.-H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16, 10675–10683 (2008).
[Crossref]

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

Robbins, D.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

Rosales, R.

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

Schell, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

Shimizu, T.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[Crossref]

Smagley, V. A.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Smalbrugge, E.

M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
[Crossref]

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Smit, M.

M. Tahvili, Y. Barbarin, X. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. Ambrosius, M. Smit, and E. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36, 2462–2464 (2011).
[Crossref]

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

Smit, M. K.

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31, 3055–3063 (2013).
[Crossref]

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), 2011 and 23rd International Conference on Indium Phosphide and Related Materials (2011), pp. 1–4.

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Smolyakov, G.

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

Strain, M. J.

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

Tahvili, M.

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

Tourrenc, J.-P.

Van der Tol, J.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

Van Dijk, F.

Vawter, G. A.

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86  GHz,” Appl. Phys. Lett. 63, 1598–1600 (1993).
[Crossref]

Wale, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

Williams, P. J.

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), 2011 and 23rd International Conference on Indium Phosphide and Related Materials (2011), pp. 1–4.

Wonfor, A.

X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).

Xu, L.

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Yokoyama, H.

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[Crossref]

Zhang, L. M.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051–1058 (1995).
[Crossref]

Zhao, J.

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), 2011 and 23rd International Conference on Indium Phosphide and Related Materials (2011), pp. 1–4.

Appl. Phys. Lett. (1)

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86  GHz,” Appl. Phys. Lett. 63, 1598–1600 (1993).
[Crossref]

Electron. Lett. (1)

T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett. 33, 1868–1869 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051–1058 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19, 1100808 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photon. Technol. Lett. 23, 1064–1066 (2011).
[Crossref]

IET Optoelectron. (1)

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

J. Lightwave Technol. (1)

New J. Phys. (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (7)

http://www.smartphotonics.nl/

X. Guo, A. H. Quarterman, V. F. Olle, A. Wonfor, R. V. Penty, and I. H. White, “Variable repetition rate monolithically integrated mode-locked-laser-modulator-MOPA device,” in 23rd International Semiconductor Laser Conference (ISLC), San Diego, CA, USA (2012).

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO) (2012), paper CW1N.7.

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode locked InAs/InP quantum dash based DBR Laser monolithically integrated with a semiconductor optical amplifier,” in International Conference on Indium Phosphide and Related Materials (IPRM) (2013).

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 3, pp. 1793–1795.

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), 2011 and 23rd International Conference on Indium Phosphide and Related Materials (2011), pp. 1–4.

L. Xu, X. J. M. Leijtens, B. Docter, T. De Vries, E. Smalbrugge, F. Karouta, and M. K. Smit, “MMI-reflector: a novel on-chip reflector for photonic integrated circuits,” in 35th European Conference on Optical Communication (ECOC) (2009), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Two types of MIRs; (b) two types of OCMLLD structures.
Fig. 2.
Fig. 2. Photograph of two on-chip mode-locked lasers, using MIRs, with the SA at the two different locations.
Fig. 3.
Fig. 3. Experimental setup: AC, autocorrelator; EDFA, erbium doped fiber amplifier; ESA, electrical spectrum analyzer; I, current source; Iso, optical isolator; OSA, optical spectrum analyzer; PC, polarization controller; PD, photodiode; PM, power meter; −V, reverse bias voltage.
Fig. 4.
Fig. 4. (a) Optical power versus current (LI curve); regions are FP, Fabry–Perot; ML, mode-locked; (b) optical spectra map.
Fig. 5.
Fig. 5. Optical spectrum of the OCMLLD in the mode-lock state; central wavelength, 1558 nm; span, 30 nm; inset shows the frequency mode spacing; resolution is 0.02 nm.
Fig. 6.
Fig. 6. Electrical spectrum of the OCMLLD; center frequency, 15 GHz; span, 30 GHz; resolution bandwidth (RBW), 1 MHz; video bandwidth (VBW), 1 MHz.
Fig. 7.
Fig. 7. (a) Pulsewidth versus gain section current level at fixed VSA; (b) pulse width versus reverse absorber voltage at fixed ISOA; (c) measured optical pulse shape (blue, line marked with circles) fitted to a Gaussian lineshape (red, continuous line).

Metrics