Abstract

Spurious-free dynamic range (SFDR) limited by intermodulation distortions is a usually accepted measure for dynamic performance of a photonic time-stretched analog-to-digital converter (ADC). In this paper, SFDR improvement in a photonic time-stretched ADC based on third-order predistortion is proposed. The third-order predistortion is achieved optically within an integrated dual-parallel Mach–Zehnder modulator (DPMZM). The mechanism of SFDR improvement with third-order predistortion in the DPMZM is theoretically analyzed. Compared with a conventional scheme without predistortion, the experimental results show that the SFDR improvement of 26dB in the proposed scheme is proved.

[Publisher's Note: This paper is part of the Microwave Photonics special issue published in Photonics Research, Vol. 2, No. 4. It was mistakenly published in Issue No. 5.]

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Broadband linearization in photonic time-stretch analog-to-digital converters employing an asymmetrical dual-parallel Mach-Zehnder modulator and a balanced detector

Di Peng, Zhiyao Zhang, Yangxue Ma, Yali Zhang, Shangjian Zhang, and Yong Liu
Opt. Express 24(11) 11546-11557 (2016)

Photonic analog-to-digital converters

George C. Valley
Opt. Express 15(5) 1955-1982 (2007)

Harmonics analysis of the photonic time stretch system

Yuan Mei, Boyu Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin, and Xianmin Zhang
Appl. Opt. 55(26) 7222-7228 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. H.  Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
    [Crossref]
  2. R.  Walden, “Analog-to-digital conversion in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.
  3. G. C.  Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref]
  4. J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  5. Y.  Han, B.  Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
    [Crossref]
  6. S.  Gupta, B.  Jalali, “2nd order distortion cancellation in photonic time stretch analog-to-digital converter,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2007), pp. 229–232.
  7. S.  Gupta, G. C.  Valley, B.  Jalali, “Distortion cancellation in time-stretch analog-to-digital converter,” J. Lightwave Technol. 25, 3716–3721 (2007).
    [Crossref]
  8. H. S.  Jang, H. T.  Jeong, C. D.  Kim, I. S.  Chang, “New predistortion method using phase modulation with envelope signal,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2003), pp. 1339–1342.
  9. G. C.  Wilson, “Optimized predistortion of overmodulated Mach–Zehnder modulators with multicarrier input,” IEEE Photon. Technol. Lett. 9, 1535–1537 (1997).
    [Crossref]
  10. Y.  Tang, K. P.  Ho, W.  Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20, 954–956 (2008).
    [Crossref]
  11. R. W.  Boyd, Nonlinear Optics (Academic, 2003).
  12. B.  Masella, B.  Hraimel, X.  Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach–Zehnder modulator,” J. Lightwave Technol. 27, 3034–3041 (2009).
    [Crossref]

2009 (1)

2008 (1)

Y.  Tang, K. P.  Ho, W.  Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20, 954–956 (2008).
[Crossref]

2007 (3)

2003 (1)

1999 (1)

R. H.  Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[Crossref]

1997 (1)

G. C.  Wilson, “Optimized predistortion of overmodulated Mach–Zehnder modulators with multicarrier input,” IEEE Photon. Technol. Lett. 9, 1535–1537 (1997).
[Crossref]

Boyd, R. W.

R. W.  Boyd, Nonlinear Optics (Academic, 2003).

Capmany, J.

J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Chang, I. S.

H. S.  Jang, H. T.  Jeong, C. D.  Kim, I. S.  Chang, “New predistortion method using phase modulation with envelope signal,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2003), pp. 1339–1342.

Gupta, S.

S.  Gupta, G. C.  Valley, B.  Jalali, “Distortion cancellation in time-stretch analog-to-digital converter,” J. Lightwave Technol. 25, 3716–3721 (2007).
[Crossref]

S.  Gupta, B.  Jalali, “2nd order distortion cancellation in photonic time stretch analog-to-digital converter,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2007), pp. 229–232.

Han, Y.

Ho, K. P.

Y.  Tang, K. P.  Ho, W.  Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20, 954–956 (2008).
[Crossref]

Hraimel, B.

Jalali, B.

S.  Gupta, G. C.  Valley, B.  Jalali, “Distortion cancellation in time-stretch analog-to-digital converter,” J. Lightwave Technol. 25, 3716–3721 (2007).
[Crossref]

Y.  Han, B.  Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
[Crossref]

S.  Gupta, B.  Jalali, “2nd order distortion cancellation in photonic time stretch analog-to-digital converter,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2007), pp. 229–232.

Jang, H. S.

H. S.  Jang, H. T.  Jeong, C. D.  Kim, I. S.  Chang, “New predistortion method using phase modulation with envelope signal,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2003), pp. 1339–1342.

Jeong, H. T.

H. S.  Jang, H. T.  Jeong, C. D.  Kim, I. S.  Chang, “New predistortion method using phase modulation with envelope signal,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2003), pp. 1339–1342.

Kim, C. D.

H. S.  Jang, H. T.  Jeong, C. D.  Kim, I. S.  Chang, “New predistortion method using phase modulation with envelope signal,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2003), pp. 1339–1342.

Masella, B.

Novak, D.

J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Shieh, W.

Y.  Tang, K. P.  Ho, W.  Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20, 954–956 (2008).
[Crossref]

Tang, Y.

Y.  Tang, K. P.  Ho, W.  Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20, 954–956 (2008).
[Crossref]

Valley, G. C.

Walden, R.

R.  Walden, “Analog-to-digital conversion in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.

Walden, R. H.

R. H.  Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[Crossref]

Wilson, G. C.

G. C.  Wilson, “Optimized predistortion of overmodulated Mach–Zehnder modulators with multicarrier input,” IEEE Photon. Technol. Lett. 9, 1535–1537 (1997).
[Crossref]

Zhang, X.

IEEE J. Sel. Areas Commun. (1)

R. H.  Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (2)

G. C.  Wilson, “Optimized predistortion of overmodulated Mach–Zehnder modulators with multicarrier input,” IEEE Photon. Technol. Lett. 9, 1535–1537 (1997).
[Crossref]

Y.  Tang, K. P.  Ho, W.  Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20, 954–956 (2008).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Opt. Express (1)

Other (4)

R.  Walden, “Analog-to-digital conversion in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.

H. S.  Jang, H. T.  Jeong, C. D.  Kim, I. S.  Chang, “New predistortion method using phase modulation with envelope signal,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2003), pp. 1339–1342.

S.  Gupta, B.  Jalali, “2nd order distortion cancellation in photonic time stretch analog-to-digital converter,” in Proceedings of IEEE Conference on Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, 2007), pp. 229–232.

R. W.  Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of the proposed photonic time-stretched ADC based on third-order predistortion (SC, super-continuum).
Fig. 2.
Fig. 2. Experimental setup of the proposed photonic time-stretched ADC based third-order predistortion (OSC, oscillator; SA, spectrum analyzer).
Fig. 3.
Fig. 3. (a) Electronic output spectrum for the conventional scheme without predistortion by using a common MZM. (b) Electronic output spectrum for the highly linearized scheme based on third-order predistortion by using DPMZM.
Fig. 4.
Fig. 4. Simulation and experimental results show the C/IM as a function of the modulation index m.
Fig. 5.
Fig. 5. Power of the stretched signal as a function of electronic input power for our proposed scheme and conventional scheme without predistortion. (a) Squares and lines represent the experimental data and linear fits to the fundamental and limiting IMD3 of common MZM scheme. (b) Circles and lines represent the experimental and linear fits to the fundamental and limiting IMD3 of the proposed DPMZM scheme.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( ω ) = E 0 ( 2 π T 0 2 ) 1 / 2 exp ( ω 2 T 0 2 2 ) ,
E 2 ( ω ) = E 1 ( ω ) exp ( j L 1 β 2 ω 2 2 ) ,
E 3 ( t ) = E 2 ( t ) 2 [ cos φ 1 ( t ) 2 e j φ 3 / 2 + cos φ 2 2 e j φ 3 / 2 ] ,
E 4 ( ω ) = E 3 ( ω ) exp ( j L 2 β 2 ω 2 2 ) ,
I ( t ) | E 4 ( t ) | 2 .
V ( t ) = m [ cos ( ω 1 t ) + cos ( ω 2 t ) ] ,
IMD 3 = E 2 ( t ) e j φ 3 / 2 J 1 ( m 2 ) J 2 ( m 2 ) sin ( φ 1 2 ) cos ( 2 ω 2 t ± ω 1 t ) ,
I ( t ) I env ( t ) { Γ 0 + Γ 1 [ cos ( ω 1 t M ) + cos ( ω 2 t M ) ] + Γ 3 [ cos ( 2 ω 1 t ± ω 2 t M ) + cos ( 2 ω 2 t ± ω 1 t M ) ] } ,
Γ 3 = K [ J 0 ( m 2 ) J 1 ( m 2 ) 2 cos ( φ 1 2 ) + J 2 ( m 2 ) ( 2 J 0 ( m 2 ) 2 cos ( φ 1 2 ) + cos ( φ 2 2 ) cos ( φ 3 ) ) ] ,
Γ 3 = K [ m 2 32 ( 4 cos ( φ 1 2 ) + cos ( φ 2 2 ) cos ( φ 3 ) ) m 4 64 cos ( φ 1 2 ) + O ( m 4 ) ] .
4 cos ( φ 1 2 ) + cos ( φ 2 2 ) cos ( φ 3 ) = 0 ,
H = ( cos ( 2 π 2 β 2 L 2 f 2 / M ) ) 2 ,

Metrics