Abstract

A cost-effective and high-throughput material named perovskite has proven to be capable of converting 15.9% of the solar energy to electricity, compared to an efficiency of 3.8% that was obtained only four years ago. It has already outperformed most of the thin-film solar cell technologies that researchers have been studying for decades. Currently, the architecture of perovskite solar cells has been simplified from the traditional dye-sensitized solar cells to planar-heterojunction solar cells. Recently, the performance of perovskite in solar cells has attracted intensive attention and studies. Foreseeably, many transformative steps will be put forward over the coming few years. In this review, we summarize the recent exciting development in perovskite solar cells, and discuss the fundamental mechanisms of perovskite materials in solar cells and their structural evolution. In addition, future directions and prospects are proposed toward high-efficiency perovskite solar cells for practical applications.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells

Ming-Hua Liu, Zheng-Ji Zhou, Pan-Pan Zhang, Qing-Wen Tian, Wen-Hui Zhou, Dong-Xing Kou, and Si-Xin Wu
Opt. Express 24(22) A1349-A1359 (2016)

Modeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability

Haejun Chung, Xingshu Sun, Aditya D. Mohite, Rahul Singh, Lokendra Kumar, Muhammad A. Alam, and Peter Bermel
Opt. Express 25(8) A311-A322 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).
  2. D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).
  3. IEA-ETSAP and IRENA Technology Brief E11 (2013).
  4. K. Efthymios and R. Bryce, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovoltaics Res. Appl. 19, 345–351 (2011).
  5. D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bull. 33, 355–364 (2008).
    [Crossref]
  6. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).
  7. X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
    [Crossref]
  8. C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).
  9. W. M. Robert, Z. Guillaume, and F. Ian, “Inorganic photovoltaic cells,” Mater. Today 10(11), 20–27 (2007).
    [Crossref]
  10. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
    [Crossref]
  11. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
    [Crossref]
  12. J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).
  13. N. Tetreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5, 8506–8516 (2012).
  14. G. Boschloo and A. Hagfeldt, “Characteristics of the iodide/triiodideredox mediator in dye-sensitized solar cells,” Acc. Chem. Res. 42, 1819–1826 (2009).
    [Crossref]
  15. J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
    [Crossref]
  16. E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
    [Crossref]
  17. S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
    [Crossref]
  18. C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).
    [Crossref]
  19. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
    [Crossref]
  20. B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).
    [Crossref]
  21. D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
    [Crossref]
  22. Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).
  23. A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
    [Crossref]
  24. U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
    [Crossref]
  25. L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
    [Crossref]
  26. W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
    [Crossref]
  27. S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
    [Crossref]
  28. K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).
    [Crossref]
  29. J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
    [Crossref]
  30. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
    [Crossref]
  31. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
  32. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
    [Crossref]
  33. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).
  34. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
    [Crossref]
  35. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
    [Crossref]
  36. L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
    [Crossref]
  37. S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
    [Crossref]
  38. E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).
    [Crossref]
  39. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).
  40. D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
    [Crossref]
  41. I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
    [Crossref]
  42. H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
    [Crossref]
  43. A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
    [Crossref]
  44. J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).
  45. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
    [Crossref]
  46. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
    [Crossref]
  47. A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
    [Crossref]
  48. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
    [Crossref]
  49. D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).
  50. J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
    [Crossref]
  51. D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
    [Crossref]
  52. J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758–764 (2014).
    [Crossref]
  53. N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
    [Crossref]
  54. T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
    [Crossref]
  55. B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
    [Crossref]
  56. J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
    [Crossref]
  57. Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
    [Crossref]
  58. D. Y. Liu and L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
    [Crossref]
  59. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).
  60. J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
    [Crossref]
  61. G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
    [Crossref]
  62. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
    [Crossref]
  63. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
    [Crossref]
  64. G. Hodes, “Perovskite-based solar cells,” Science 342, 317–318 (2013).
    [Crossref]
  65. R. F. Service, “Turning up the light,” Science 342, 794–797 (2013).
    [Crossref]
  66. M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
    [Crossref]
  67. H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,” J. Phys. Chem. Lett. 4, 3623–3630 (2013).
    [Crossref]
  68. J. H. Rhee, C. C. Chung, and E. W. G. Diau, “A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites,” NPG Asia Mater. 5, e68 (2013).
    [Crossref]
  69. N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4, 2423–2429 (2013).
    [Crossref]
  70. I. Borriello, G. Cantele, and D. Ninno, “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides,” Phys. Rev. B 77, 235214 (2008).
    [Crossref]
  71. G. Shirane, H. Danner, and R. Pepinshi, “Neutron diffraction study of orthorhombic BaTiO3,” Phys. Rev. 105, 856–860 (1957).
    [Crossref]
  72. E. P. Giannelis, “Polymer layered silicate nanocomposites,” Adv. Mater. 8, 29–35 (1996).
    [Crossref]
  73. S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1641 (2003).
    [Crossref]
  74. S. S. Ray and M. Bousmina, “Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world,” Prog. Mater. Sci. 50, 962–1079 (2005).
    [Crossref]
  75. D. B. Mitzi, “Synthesis and crystal structure of the alkylbismuth diiodides: a family of extended one-dimensional organometallic compounds,” Inorg. Chem. 35, 7614–7619 (1996).
    [Crossref]
  76. D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).
    [Crossref]
  77. O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
    [Crossref]
  78. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
    [Crossref]
  79. A. Poglitsch and D. Weber, “Dynamic disorder in methyl ammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 6373–6378 (1987).
    [Crossref]
  80. K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
    [Crossref]
  81. K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
    [Crossref]
  82. Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).
  83. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
    [Crossref]
  84. D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).
    [Crossref]
  85. F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
    [Crossref]
  86. D. B. Mitzi, “Thin-film deposition of organic–inorganic hybrid materials,” Chem. Mater. 13, 3283–3298 (2001).
    [Crossref]
  87. R. Valiente and F. Rodriguez, “Electron-phonon coupling in charge-transfer and crystal-field states of Jahn–Teller CuCl64- systems,” Phys. Rev. B 60, 9423–9429 (1999).
    [Crossref]
  88. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science 286, 945–947 (1999).
    [Crossref]
  89. P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).
    [Crossref]
  90. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).
    [Crossref]
  91. X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45, 6961–6964 (1992).
    [Crossref]
  92. H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
    [Crossref]
  93. J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
    [Crossref]
  94. J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
    [Crossref]
  95. J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
    [Crossref]
  96. J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
    [Crossref]
  97. J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
    [Crossref]
  98. J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
    [Crossref]
  99. J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
    [Crossref]
  100. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).
    [Crossref]
  101. J. P. González-Vázquez, V. Morales-Florez, and J. A. Anta, “How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?” J. Phys. Chem. Lett. 3, 386–393 (2012).
    [Crossref]
  102. K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
    [Crossref]
  103. C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
    [Crossref]
  104. K. N. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chem. Mater. 10, 403–411 (1998).
    [Crossref]
  105. P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys. 28, 433–530 (1903).
  106. H. J. Snaith, “Estimating the maximum attainable efficiency in dye-sensitized solar cells,” Adv. Funct. Mater. 20, 13–19 (2010).
    [Crossref]

2014 (12)

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
[Crossref]

T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
[Crossref]

B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
[Crossref]

J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
[Crossref]

Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
[Crossref]

D. Y. Liu and L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
[Crossref]

J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758–764 (2014).
[Crossref]

M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

2013 (29)

G. Hodes, “Perovskite-based solar cells,” Science 342, 317–318 (2013).
[Crossref]

R. F. Service, “Turning up the light,” Science 342, 794–797 (2013).
[Crossref]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,” J. Phys. Chem. Lett. 4, 3623–3630 (2013).
[Crossref]

J. H. Rhee, C. C. Chung, and E. W. G. Diau, “A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites,” NPG Asia Mater. 5, e68 (2013).
[Crossref]

N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4, 2423–2429 (2013).
[Crossref]

N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
[Crossref]

G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
[Crossref]

D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
[Crossref]

H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
[Crossref]

A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
[Crossref]

J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
[Crossref]

A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
[Crossref]

S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
[Crossref]

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
[Crossref]

X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
[Crossref]

J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
[Crossref]

J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
[Crossref]

J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
[Crossref]

C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
[Crossref]

2012 (12)

J. P. González-Vázquez, V. Morales-Florez, and J. A. Anta, “How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?” J. Phys. Chem. Lett. 3, 386–393 (2012).
[Crossref]

J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
[Crossref]

D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).

J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).

N. Tetreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5, 8506–8516 (2012).

J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
[Crossref]

E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
[Crossref]

I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
[Crossref]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
[Crossref]

2011 (10)

W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
[Crossref]

Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
[Crossref]

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).
[Crossref]

K. Efthymios and R. Bryce, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovoltaics Res. Appl. 19, 345–351 (2011).

S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
[Crossref]

J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
[Crossref]

2010 (5)

K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
[Crossref]

H. J. Snaith, “Estimating the maximum attainable efficiency in dye-sensitized solar cells,” Adv. Funct. Mater. 20, 13–19 (2010).
[Crossref]

C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
[Crossref]

A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
[Crossref]

2009 (3)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

G. Boschloo and A. Hagfeldt, “Characteristics of the iodide/triiodideredox mediator in dye-sensitized solar cells,” Acc. Chem. Res. 42, 1819–1826 (2009).
[Crossref]

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).
[Crossref]

2008 (4)

D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
[Crossref]

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bull. 33, 355–364 (2008).
[Crossref]

I. Borriello, G. Cantele, and D. Ninno, “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides,” Phys. Rev. B 77, 235214 (2008).
[Crossref]

H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
[Crossref]

2007 (2)

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).
[Crossref]

W. M. Robert, Z. Guillaume, and F. Ian, “Inorganic photovoltaic cells,” Mater. Today 10(11), 20–27 (2007).
[Crossref]

2005 (3)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref]

S. S. Ray and M. Bousmina, “Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world,” Prog. Mater. Sci. 50, 962–1079 (2005).
[Crossref]

F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
[Crossref]

2004 (1)

S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
[Crossref]

2003 (2)

S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1641 (2003).
[Crossref]

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
[Crossref]

2001 (2)

D. B. Mitzi, “Thin-film deposition of organic–inorganic hybrid materials,” Chem. Mater. 13, 3283–3298 (2001).
[Crossref]

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
[Crossref]

1999 (2)

R. Valiente and F. Rodriguez, “Electron-phonon coupling in charge-transfer and crystal-field states of Jahn–Teller CuCl64- systems,” Phys. Rev. B 60, 9423–9429 (1999).
[Crossref]

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science 286, 945–947 (1999).
[Crossref]

1998 (4)

K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
[Crossref]

K. N. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chem. Mater. 10, 403–411 (1998).
[Crossref]

U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
[Crossref]

K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).
[Crossref]

1996 (2)

D. B. Mitzi, “Synthesis and crystal structure of the alkylbismuth diiodides: a family of extended one-dimensional organometallic compounds,” Inorg. Chem. 35, 7614–7619 (1996).
[Crossref]

E. P. Giannelis, “Polymer layered silicate nanocomposites,” Adv. Mater. 8, 29–35 (1996).
[Crossref]

1995 (2)

D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).
[Crossref]

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
[Crossref]

1994 (2)

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).
[Crossref]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).
[Crossref]

1992 (2)

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45, 6961–6964 (1992).
[Crossref]

P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).
[Crossref]

1991 (2)

Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[Crossref]

1990 (1)

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
[Crossref]

1987 (1)

A. Poglitsch and D. Weber, “Dynamic disorder in methyl ammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 6373–6378 (1987).
[Crossref]

1957 (1)

G. Shirane, H. Danner, and R. Pepinshi, “Neutron diffraction study of orthorhombic BaTiO3,” Phys. Rev. 105, 856–860 (1957).
[Crossref]

1903 (1)

P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys. 28, 433–530 (1903).

Abate, A.

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
[Crossref]

A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
[Crossref]

Abrusci, A.

A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
[Crossref]

Ahmad, S.

J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
[Crossref]

Alcocer, M. J. P.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Alexander-Webber, J. A.

J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
[Crossref]

Andrea, L.

C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
[Crossref]

Anta, J. A.

J. P. González-Vázquez, V. Morales-Florez, and J. A. Anta, “How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?” J. Phys. Chem. Lett. 3, 386–393 (2012).
[Crossref]

Avolio, R.

A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
[Crossref]

Aydil, E. S.

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).
[Crossref]

Bach, U.

U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
[Crossref]

Baeten, L.

B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
[Crossref]

Ball, J. M.

J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
[Crossref]

J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).

Ban, T.

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
[Crossref]

Baranoff, E.

J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
[Crossref]

Barea, E. M.

J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
[Crossref]

Besagni, T.

F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
[Crossref]

Bi, D. Q.

D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
[Crossref]

D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
[Crossref]

Boix, P. P.

H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
[Crossref]

Borriello, I.

I. Borriello, G. Cantele, and D. Ninno, “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides,” Phys. Rev. B 77, 235214 (2008).
[Crossref]

Boschlo, G.

J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
[Crossref]

Boschloo, G.

D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
[Crossref]

D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
[Crossref]

S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
[Crossref]

A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
[Crossref]

G. Boschloo and A. Hagfeldt, “Characteristics of the iodide/triiodideredox mediator in dye-sensitized solar cells,” Acc. Chem. Res. 42, 1819–1826 (2009).
[Crossref]

Bousmina, M.

S. S. Ray and M. Bousmina, “Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world,” Prog. Mater. Sci. 50, 962–1079 (2005).
[Crossref]

Brillet, J.

D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
[Crossref]

Bryce, R.

K. Efthymios and R. Bryce, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovoltaics Res. Appl. 19, 345–351 (2011).

Burlakov, V. M.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Cabot, A.

J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
[Crossref]

Cahen, D.

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).
[Crossref]

Cai, M.

J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
[Crossref]

Cameron, T. S.

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
[Crossref]

Cantele, G.

I. Borriello, G. Cantele, and D. Ninno, “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides,” Phys. Rev. B 77, 235214 (2008).
[Crossref]

Cappel, U. B.

L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
[Crossref]

Carrete, A.

J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
[Crossref]

Cesar, I.

H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
[Crossref]

Cevey, L.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
[Crossref]

Chandiran, A. K.

L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
[Crossref]

A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
[Crossref]

Chang, R. P. H.

I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Chassaing, E.

C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

Chen, P.

D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
[Crossref]

H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
[Crossref]

Chen, Q.

J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
[Crossref]

Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
[Crossref]

Chen, S.

T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
[Crossref]

Chen, X.

X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Chen, Z.

K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
[Crossref]

Chess, C. A.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
[Crossref]

Chiarella, F.

F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
[Crossref]

Christians, J. A.

J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758–764 (2014).
[Crossref]

Chung, C. C.

J. H. Rhee, C. C. Chung, and E. W. G. Diau, “A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites,” NPG Asia Mater. 5, e68 (2013).
[Crossref]

Chung, I.

I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Collins, R.

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bull. 33, 355–364 (2008).
[Crossref]

Comte, P.

U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
[Crossref]

Cong, J. Y.

J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).

Conings, B.

B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
[Crossref]

D’Haen, J.

B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
[Crossref]

Danner, H.

G. Shirane, H. Danner, and R. Pepinshi, “Neutron diffraction study of orthorhombic BaTiO3,” Phys. Rev. 105, 856–860 (1957).
[Crossref]

Darling, S. B.

D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).

S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).

Desai, U. V.

C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).
[Crossref]

Diau, E. W. G.

J. H. Rhee, C. C. Chung, and E. W. G. Diau, “A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites,” NPG Asia Mater. 5, e68 (2013).
[Crossref]

Dimitrakopoulos, C. D.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science 286, 945–947 (1999).
[Crossref]

Dobbelaere, C. D.

B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
[Crossref]

Docampo, P.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
[Crossref]

A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
[Crossref]

Drumheller, J. E.

P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).
[Crossref]

Duan, H. S.

Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
[Crossref]

Edoardo, M.

C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
[Crossref]

Edri, E.

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).
[Crossref]

Educhi, T.

Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

Efthymios, K.

K. Efthymios and R. Bryce, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovoltaics Res. Appl. 19, 345–351 (2011).

Eperon, G. E.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Era, M.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).
[Crossref]

Etgar, L.

L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
[Crossref]

Fabrega, C.

J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
[Crossref]

Fábrega, C.

J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
[Crossref]

J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
[Crossref]

J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
[Crossref]

J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
[Crossref]

Fan, J. D.

J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
[Crossref]

J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
[Crossref]

J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
[Crossref]

J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
[Crossref]

J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
[Crossref]

J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
[Crossref]

J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
[Crossref]

Fang, L.

Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

Fang, Y. N.

T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
[Crossref]

Feild, C. A.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
[Crossref]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).
[Crossref]

Feldt, S. M.

S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
[Crossref]

Ferro, P.

F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
[Crossref]

Field, C. A.

D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).
[Crossref]

Flox, C.

J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
[Crossref]

Francesco, G.

C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
[Crossref]

Frank, A. J.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).
[Crossref]

Fu, K. W.

T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
[Crossref]

Fung, R. C. M.

J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758–764 (2014).
[Crossref]

Gabrielsson, E.

S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
[Crossref]

Gao, D.

C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
[Crossref]

Giannelis, E. P.

E. P. Giannelis, “Polymer layered silicate nanocomposites,” Adv. Mater. 8, 29–35 (1996).
[Crossref]

Gibson, E. A.

S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
[Crossref]

Ginley, D.

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bull. 33, 355–364 (2008).
[Crossref]

Gomez-Garcia, C. J.

E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
[Crossref]

González-Vázquez, J. P.

J. P. González-Vázquez, V. Morales-Florez, and J. A. Anta, “How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?” J. Phys. Chem. Lett. 3, 386–393 (2012).
[Crossref]

Goriely, A.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
[Crossref]

Goto, S.

K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
[Crossref]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Grätzel, M.

N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
[Crossref]

N. Tetreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5, 8506–8516 (2012).

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
[Crossref]

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[Crossref]

Green, M. A.

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bull. 33, 355–364 (2008).
[Crossref]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref]

Gu, M.

X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Guell, F.

J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
[Crossref]

Güell, F.

J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
[Crossref]

J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
[Crossref]

Guillaume, Z.

W. M. Robert, Z. Guillaume, and F. Ian, “Inorganic photovoltaic cells,” Mater. Today 10(11), 20–27 (2007).
[Crossref]

Guloy, A. M.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
[Crossref]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).
[Crossref]

Hagfeldt, A.

D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
[Crossref]

A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
[Crossref]

G. Boschloo and A. Hagfeldt, “Characteristics of the iodide/triiodideredox mediator in dye-sensitized solar cells,” Acc. Chem. Res. 42, 1819–1826 (2009).
[Crossref]

Häggman, L.

D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

Hao, Y.

J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
[Crossref]

J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
[Crossref]

J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
[Crossref]

Hariskos, D.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

Harrison, W. T. A.

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).
[Crossref]

He, J. Q.

I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

He, M.

M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
[Crossref]

Heo, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

Hernández, M. G.

J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
[Crossref]

Herz, L. M.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

Hey, A.

J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).

Hibberd, C. J.

C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

Hodes, G.

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).
[Crossref]

G. Hodes, “Perovskite-based solar cells,” Science 342, 317–318 (2013).
[Crossref]

Hollman, D. J.

A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
[Crossref]

Hong, X.

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45, 6961–6964 (1992).
[Crossref]

Hong, Z. R.

J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
[Crossref]

Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
[Crossref]

Hua, L. P.

Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

Huang, Q. L.

Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

Humphry-Baker, R.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
[Crossref]

Ian, F.

W. M. Robert, Z. Guillaume, and F. Ian, “Inorganic photovoltaic cells,” Mater. Today 10(11), 20–27 (2007).
[Crossref]

Im, J. H.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Im, S. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

Ishihara, T.

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45, 6961–6964 (1992).
[Crossref]

Jackson, P.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

Jen, A. K. Y.

A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
[Crossref]

Jia, B. H.

X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Johansson, E. M. J.

D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
[Crossref]

D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
[Crossref]

J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
[Crossref]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref]

Johnston, M. B.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

JoongJeon, N.

N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
[Crossref]

Kagan, C. R.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science 286, 945–947 (1999).
[Crossref]

Kamat, P. V.

J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758–764 (2014).
[Crossref]

Kanatzidis, M. G.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Karlsson, K. M.

L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
[Crossref]

Karlsson, M.

L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
[Crossref]

Kelly, L.

D. Y. Liu and L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

Kessler, F.

E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
[Crossref]

J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
[Crossref]

Khatav, P.

D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).

Kim, D. W.

S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
[Crossref]

Kim, H. S.

H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
[Crossref]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Kim, J. S.

S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
[Crossref]

Kirmayer, S.

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).
[Crossref]

Kishita, M.

Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

Kloo, L.

J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).

A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
[Crossref]

Knop, O.

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
[Crossref]

Kogure, R.

K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).
[Crossref]

Koh, T. M.

T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Kondo, T.

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
[Crossref]

Krüger, J.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
[Crossref]

Kuang, D. B.

D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
[Crossref]

Kulkarni, S. A.

H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
[Crossref]

Kuranaga, Y.

K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
[Crossref]

Laibowitz, R. B.

D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).
[Crossref]

Lam, Y. M.

G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Langevin, P.

P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys. 28, 433–530 (1903).

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref]

Lee, B. H.

I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Lee, C. R.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Lee, H. W.

A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
[Crossref]

Lee, J.

N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
[Crossref]

Lee, J. W.

H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
[Crossref]

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Lee, K. B.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Lee, K. D.

S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
[Crossref]

Lee, M. M.

J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

Leijtens, T.

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

Li, F.

W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
[Crossref]

Li, Y. L.

S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
[Crossref]

Liang, K. N.

K. N. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chem. Mater. 10, 403–411 (1998).
[Crossref]

Licci, F.

F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
[Crossref]

Lim, S. S.

G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Lin, C. J.

M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
[Crossref]

Lin, Z. Q.

M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
[Crossref]

Lincot, D.

C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

Liu, B.

W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
[Crossref]

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).
[Crossref]

Liu, D. Y.

D. Y. Liu and L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

Liu, M.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

Liu, W.

C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

Lotter, E.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

Luo, S.

Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
[Crossref]

Lupo, D.

U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
[Crossref]

Malliakas, C. D.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

Manca, J.

B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
[Crossref]

Mandal, T. N.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

Mathews, N.

G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Menelaou, C.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

Meng, Q. B.

S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
[Crossref]

Miedaner, A.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).
[Crossref]

Mitzi, D. B.

C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

D. B. Mitzi, “Thin-film deposition of organic–inorganic hybrid materials,” Chem. Mater. 13, 3283–3298 (2001).
[Crossref]

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science 286, 945–947 (1999).
[Crossref]

K. N. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chem. Mater. 10, 403–411 (1998).
[Crossref]

D. B. Mitzi, “Synthesis and crystal structure of the alkylbismuth diiodides: a family of extended one-dimensional organometallic compounds,” Inorg. Chem. 35, 7614–7619 (1996).
[Crossref]

D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).
[Crossref]

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
[Crossref]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).
[Crossref]

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Moehl, T.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
[Crossref]

Moon, S. J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

Morales-Florez, V.

J. P. González-Vázquez, V. Morales-Florez, and J. A. Anta, “How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?” J. Phys. Chem. Lett. 3, 386–393 (2012).
[Crossref]

Morimoto, S.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).
[Crossref]

Mosconi, E.

E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
[Crossref]

Moser, J. E.

U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
[Crossref]

Mu, C.

J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
[Crossref]

Munuera, C.

J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
[Crossref]

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

Murakoshi, K.

K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).
[Crossref]

Nakamura, N.

Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

Nakayama, H.

Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

Nazeeruddin, M. K.

N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
[Crossref]

Neale, N. R.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).
[Crossref]

Ninno, D.

I. Borriello, G. Cantele, and D. Ninno, “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides,” Phys. Rev. B 77, 235214 (2008).
[Crossref]

Noh, J. H.

N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
[Crossref]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

Nurmikko, A. V.

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45, 6961–6964 (1992).
[Crossref]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[Crossref]

Okamoto, M.

S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1641 (2003).
[Crossref]

Okuda, T.

K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
[Crossref]

Oort, M. J. M. V.

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
[Crossref]

Paetel, S.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

Paolo, F.

C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
[Crossref]

Park, N. G.

N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4, 2423–2429 (2013).
[Crossref]

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Park, S. W.

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Parra, A.

J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
[Crossref]

Pathak, S.

A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
[Crossref]

Patyal, B.

P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).
[Crossref]

Pellet, N.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Peng, Q.

L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
[Crossref]

Pepinshi, R.

G. Shirane, H. Danner, and R. Pepinshi, “Neutron diffraction study of orthorhombic BaTiO3,” Phys. Rev. 105, 856–860 (1957).
[Crossref]

Pettersson, H.

A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
[Crossref]

Piccirelli, M.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
[Crossref]

Plass, R.

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
[Crossref]

Poglitsch, A.

A. Poglitsch and D. Weber, “Dynamic disorder in methyl ammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 6373–6378 (1987).
[Crossref]

Prikas, M. T.

K. N. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chem. Mater. 10, 403–411 (1998).
[Crossref]

Qiu, J. H.

J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
[Crossref]

Qiu, Y. C.

J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
[Crossref]

Qureshi, J.

K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
[Crossref]

Ray, S. S.

S. S. Ray and M. Bousmina, “Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world,” Prog. Mater. Sci. 50, 962–1079 (2005).
[Crossref]

S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1641 (2003).
[Crossref]

Rhee, J. H.

J. H. Rhee, C. C. Chung, and E. W. G. Diau, “A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites,” NPG Asia Mater. 5, e68 (2013).
[Crossref]

Robert, W. M.

W. M. Robert, Z. Guillaume, and F. Ian, “Inorganic photovoltaic cells,” Mater. Today 10(11), 20–27 (2007).
[Crossref]

Rodriguez, F.

R. Valiente and F. Rodriguez, “Electron-phonon coupling in charge-transfer and crystal-field states of Jahn–Teller CuCl64- systems,” Phys. Rev. B 60, 9423–9429 (1999).
[Crossref]

Rousset, J.

J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
[Crossref]

Saito, S.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).
[Crossref]

Saliba, M.

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
[Crossref]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref]

Schlesinger, Z.

D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).
[Crossref]

Schwarzmüller, S.

D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
[Crossref]

Seok, S. I.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

Service, R. F.

R. F. Service, “Turning up the light,” Science 342, 794–797 (2013).
[Crossref]

Shavel, A.

J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
[Crossref]

J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
[Crossref]

J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
[Crossref]

J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
[Crossref]

Shi, X.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
[Crossref]

Shin, S. S.

S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
[Crossref]

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Shirane, G.

G. Shirane, H. Danner, and R. Pepinshi, “Neutron diffraction study of orthorhombic BaTiO3,” Phys. Rev. 105, 856–860 (1957).
[Crossref]

Shum, K.

K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
[Crossref]

Silvia, C.

C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
[Crossref]

Snaith, H. J.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
[Crossref]

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).

H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,” J. Phys. Chem. Lett. 4, 3623–3630 (2013).
[Crossref]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

H. J. Snaith, “Estimating the maximum attainable efficiency in dye-sensitized solar cells,” Adv. Funct. Mater. 20, 13–19 (2010).
[Crossref]

H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
[Crossref]

Stoumpos, C. C.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

Stranks, S. D.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
[Crossref]

A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
[Crossref]

Suk, J. H.

S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
[Crossref]

Sum, T. C.

T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
[Crossref]

Sun, L. C.

J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).

S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
[Crossref]

A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
[Crossref]

Sun, S. Y.

G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Sun, Y.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
[Crossref]

Takahashi, T.

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
[Crossref]

Takata, M.

D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
[Crossref]

Tan, S. X.

S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
[Crossref]

Tanaka, K.

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
[Crossref]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Tetreault, N.

N. Tetreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5, 8506–8516 (2012).

Teuscher, J.

A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
[Crossref]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

Tsao, H. N.

A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
[Crossref]

Tsutsui, T.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).
[Crossref]

Uchida, K.

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
[Crossref]

Uchida, S.

D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
[Crossref]

Ueda, K.

K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
[Crossref]

Unger, E. L.

L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
[Crossref]

Valiente, R.

R. Valiente and F. Rodriguez, “Electron-phonon coupling in charge-transfer and crystal-field states of Jahn–Teller CuCl64- systems,” Phys. Rev. B 60, 9423–9429 (1999).
[Crossref]

Velosa, A.

S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).

Veselka, T.

S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).

Wada, Y.

K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).
[Crossref]

Wan, M. X.

S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
[Crossref]

Wang, J. J.

K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
[Crossref]

Wang, J. T. W.

J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
[Crossref]

Wang, M. Y.

M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
[Crossref]

Wang, Q.

W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
[Crossref]

Wang, S.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
[Crossref]

Wang, Z. S.

Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

Wasylishen, R. E.

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
[Crossref]

Weber, D.

A. Poglitsch and D. Weber, “Dynamic disorder in methyl ammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 6373–6378 (1987).
[Crossref]

Wehrenfennig, C.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

Weissortel, F.

U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
[Crossref]

White, M. A.

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
[Crossref]

Willet, R. D.

P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).
[Crossref]

Wojciechowski, K.

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

Wu, J. M.

C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).
[Crossref]

Wuerz, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

Xing, G. H.

G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

Xu, C. K.

C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).
[Crossref]

Xu, Q.

Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

Xue, Z. S.

L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
[Crossref]

Yamada, K.

K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
[Crossref]

Yan, K. Y.

J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
[Crossref]

Yanagida, S.

K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).
[Crossref]

Yang, L.

D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
[Crossref]

D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
[Crossref]

D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
[Crossref]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref]

Yang, X. C.

J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).

Yang, Y.

J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
[Crossref]

Yantara, N.

H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
[Crossref]

Yella, A.

A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
[Crossref]

Yi, C. Y.

A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
[Crossref]

Yip, H. L.

A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
[Crossref]

You, F. Q.

D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).

S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).

You, J. B.

J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
[Crossref]

Yu, C. L.

K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
[Crossref]

Yue, D. J.

D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).

Yum, J. H.

J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
[Crossref]

E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
[Crossref]

Zakeeruddin, S. M.

H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
[Crossref]

Zamani, R.

J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
[Crossref]

J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
[Crossref]

J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
[Crossref]

Zamani, R. R.

J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
[Crossref]

Zappettini, A.

F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
[Crossref]

Zhai, J.

S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
[Crossref]

Zhang, W.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
[Crossref]

W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
[Crossref]

Zhang, Y. N.

X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Zheng, D. G.

M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
[Crossref]

Zhong, M.

J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
[Crossref]

Zhou, G.

Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

Zhou, H. P.

Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
[Crossref]

Zhou, P.

P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).
[Crossref]

Zhu, K.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).
[Crossref]

Zhu, R.

W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
[Crossref]

Zuccaccia, C.

E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
[Crossref]

Acc. Chem. Res. (1)

G. Boschloo and A. Hagfeldt, “Characteristics of the iodide/triiodideredox mediator in dye-sensitized solar cells,” Acc. Chem. Res. 42, 1819–1826 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (2)

J. D. Fan, Y. Hao, A. Cabot, E. M. J. Johansson, and G. Boschlo, “Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 5, 1902–1906 (2013).
[Crossref]

J. D. Fan, C. Fábrega, R. R. Zamani, Y. Hao, and A. Parra, “Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt (II/III) redox electrolyte,” ACS Appl. Mater. Interfaces 5, 9872–9877 (2013).
[Crossref]

ACS Nano (3)

D. B. Kuang, J. Brillet, P. Chen, M. Takata, and S. Uchida, “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano 2, 1113–1116 (2008).
[Crossref]

S. S. Shin, J. S. Kim, J. H. Suk, K. D. Lee, and D. W. Kim, “Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells,” ACS Nano 7, 1027–1035 (2013).
[Crossref]

J. B. You, Z. R. Hong, Y. Yang, Q. Chen, and M. Cai, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674–1680 (2014).
[Crossref]

Acta Mater. (1)

J. D. Fan, A. Shavel, R. Zamani, C. Fábrega, and J. Rousset, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires,” Acta Mater. 59, 6790–6800 (2011).
[Crossref]

Adv. Funct. Mater. (2)

H. J. Snaith, “Estimating the maximum attainable efficiency in dye-sensitized solar cells,” Adv. Funct. Mater. 20, 13–19 (2010).
[Crossref]

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151–157 (2014).
[Crossref]

Adv. Mater. (3)

B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, and J. Manca, “Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach,” Adv. Mater. 26, 2041–2046 (2014).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

E. P. Giannelis, “Polymer layered silicate nanocomposites,” Adv. Mater. 8, 29–35 (1996).
[Crossref]

Ann. Chim. Phys. (1)

P. Langevin, “Recombinaison et mobilites des ions dans les gaz,” Ann. Chim. Phys. 28, 433–530 (1903).

Appl. Phys. Lett. (4)

J. D. Fan, F. Guell, C. Fabrega, A. Shavel, and A. Carrete, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile,” Appl. Phys. Lett. 99, 262102 (2011).
[Crossref]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676–678 (1994).
[Crossref]

K. Shum, Z. Chen, J. Qureshi, C. L. Yu, and J. J. Wang, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett. 96, 221903 (2010).
[Crossref]

J. Krüger, R. Plass, L. Cevey, M. Piccirelli, and M. Grätzel, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085–2087 (2001).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, and T. Okuda, “Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3),” Bull. Chem. Soc. Jpn. 71, 127–134 (1998).
[Crossref]

Can. J. Chem. (1)

O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, “Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation,” Can. J. Chem. 68, 412–422 (1990).
[Crossref]

Chem. Mater. (3)

D. B. Mitzi, “Thin-film deposition of organic–inorganic hybrid materials,” Chem. Mater. 13, 3283–3298 (2001).
[Crossref]

C. Silvia, M. Edoardo, F. Paolo, L. Andrea, and G. Francesco, “MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties,” Chem. Mater. 25, 4613–4618 (2013).
[Crossref]

K. N. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chem. Mater. 10, 403–411 (1998).
[Crossref]

Chem. Rev. (1)

A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev. 110, 6595–6663 (2010).
[Crossref]

Cryst. Res. Technol. (1)

F. Chiarella, A. Zappettini, P. Ferro, T. Besagni, and F. Licci, “Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self-assembled films,” Cryst. Res. Technol. 40, 1028–1032 (2005).
[Crossref]

Energy Environ. Sci. (8)

J. Y. Cong, X. C. Yang, L. Kloo, and L. C. Sun, “Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells,” Energy Environ. Sci. 5, 9180–9194 (2012).

N. Tetreault and M. Grätzel, “Novel nanostructures for next generation dye-sensitized solar cells,” Energy Environ. Sci. 5, 8506–8516 (2012).

S. B. Darling, F. Q. You, T. Veselka, and A. Velosa, “Assumptions and the levelized cost of energy for photovoltaics,” Energy Environ. Sci. 4, 3133–3139 (2011).

D. J. Yue, P. Khatav, F. Q. You, and S. B. Darling, “Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics,” Energy Environ. Sci. 5, 9163–9172 (2012).

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 1142–1147 (2014).

Q. L. Huang, G. Zhou, L. Fang, L. P. Hua, and Z. S. Wang, “TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells,” Energy Environ. Sci. 4, 2145–2151 (2011).

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, and L. M. Herz, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7, 982–988 (2014).

J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci. 6, 1739–1743 (2013).

Inorg. Chem. (2)

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem. 52, 9019–9038 (2013).
[Crossref]

D. B. Mitzi, “Synthesis and crystal structure of the alkylbismuth diiodides: a family of extended one-dimensional organometallic compounds,” Inorg. Chem. 35, 7614–7619 (1996).
[Crossref]

J. Alloys Compd. (1)

J. D. Fan, C. Fábrega, R. Zamani, A. Shavel, and F. Güell, “Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness,” J. Alloys Compd. 555, 213–218 (2013).
[Crossref]

J. Am. Chem. Soc. (10)

L. Etgar, P. Gao, Z. S. Xue, Q. Peng, and A. K. Chandiran, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396–17399 (2012).
[Crossref]

J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758–764 (2014).
[Crossref]

N. JoongJeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, and M. Grätzel, “Efficient inorganic–organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials,” J. Am. Chem. Soc. 135, 19087–19090 (2013).
[Crossref]

A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, and R. Avolio, “Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells,” J. Am. Chem. Soc. 135, 13538–13548 (2013).
[Crossref]

Q. Chen, H. P. Zhou, Z. R. Hong, S. Luo, and H. S. Duan, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 622–625 (2014).
[Crossref]

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

E. Mosconi, J. H. Yum, F. Kessler, C. J. Gomez-Garcia, and C. Zuccaccia, “Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study,” J. Am. Chem. Soc. 134, 19438–19453 (2012).
[Crossref]

S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. C. Sun, and G. Boschloo, “Design of organic dyes and cobalt polypyridineredox mediators for high-efficiency dye-sensitized solar cells,” J. Am. Chem. Soc. 132, 16714–16724 (2010).
[Crossref]

C. K. Xu, J. M. Wu, U. V. Desai, and D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 8122–8125 (2011).
[Crossref]

J. Chem. Phys. (1)

A. Poglitsch and D. Weber, “Dynamic disorder in methyl ammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” J. Chem. Phys. 87, 6373–6378 (1987).
[Crossref]

J. Mater. Chem. (1)

M. He, D. G. Zheng, M. Y. Wang, C. J. Lin, and Z. Q. Lin, “High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction,” J. Mater. Chem. 2, 5994–6003 (2014).
[Crossref]

J. Phys. Chem. B (1)

S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, and Y. L. Li, “Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells,” J. Phys. Chem. B 108, 18693–18697 (2004).
[Crossref]

J. Phys. Chem. C (3)

W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, “High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter,” J. Phys. Chem. C 115, 7038–7043 (2011).
[Crossref]

T. M. Koh, K. W. Fu, Y. N. Fang, S. Chen, and T. C. Sum, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118, 16458–16462 (2014).
[Crossref]

J. D. Fan, Y. Hao, M. G. Hernández, C. Munuera, and F. Güell, “Influence of the annealing atmosphere on the performance of ZnO nanowires-based dye-sensitized solar cells,” J. Phys. Chem. C 117, 16349–16356 (2013).
[Crossref]

J. Phys. Chem. Lett. (5)

J. P. González-Vázquez, V. Morales-Florez, and J. A. Anta, “How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells?” J. Phys. Chem. Lett. 3, 386–393 (2012).
[Crossref]

D. Q. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells,” J. Phys. Chem. Lett. 4, 1532–1536 (2013).
[Crossref]

H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells,” J. Phys. Chem. Lett. 4, 3623–3630 (2013).
[Crossref]

N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett. 4, 2423–2429 (2013).
[Crossref]

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, “High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite,” J. Phys. Chem. Lett. 4, 897–902 (2013).
[Crossref]

J. Phys. D (1)

J. D. Fan, R. Zamani, C. Fábrega, A. Shavel, and C. Flox, “Solution-growth and optoelectronic performance of ZnO:Cl/TiO2 and ZnO:Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness,” J. Phys. D 45, 415301 (2012).
[Crossref]

J. Solid State Chem. (1)

D. B. Mitzi, C. A. Field, Z. Schlesinger, and R. B. Laibowitz, “Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3,” J. Solid State Chem. 114, 159–163 (1995).
[Crossref]

Light Sci. Appl. (1)

X. Chen, B. H. Jia, Y. N. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Mater. Today (1)

W. M. Robert, Z. Guillaume, and F. Ian, “Inorganic photovoltaic cells,” Mater. Today 10(11), 20–27 (2007).
[Crossref]

MRS Bull. (1)

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bull. 33, 355–364 (2008).
[Crossref]

Nano Lett. (6)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764–1769 (2013).

H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, and S. A. Kulkarni, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412–2417 (2013).
[Crossref]

A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, and A. K. Y. Jen, “High performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124–3128 (2013).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, and X. Shi, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505–4510 (2013).
[Crossref]

J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, and J. A. Alexander-Webber, “Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 724–730 (2014).
[Crossref]

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7, 69–74 (2007).
[Crossref]

Nanoscale (3)

J. H. Qiu, Y. C. Qiu, K. Y. Yan, M. Zhong, and C. Mu, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245–3248 (2013).
[Crossref]

D. Q. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, and E. M. J. Johansson, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686–11691 (2013).
[Crossref]

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Nanotechnology (1)

H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, and S. M. Zakeeruddin, “Charge collection and pore filling in solid-state dye-sensitized solar cells,” Nanotechnology 19, 424003 (2008).
[Crossref]

Nat. Commun. (1)

J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, and S. Ahmad, “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials,” Nat. Commun. 3, 631 (2012).
[Crossref]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref]

Nat. Photonics (1)

D. Y. Liu and L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

Nature (6)

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, and P. Gao, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

I. Chung, B. H. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[Crossref]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

U. Bach, D. Lupo, P. Comte, J. E. Moser, and F. Weissortel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395, 583–585 (1998).
[Crossref]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369, 467–469 (1994).
[Crossref]

NPG Asia Mater. (1)

J. H. Rhee, C. C. Chung, and E. W. G. Diau, “A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites,” NPG Asia Mater. 5, e68 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, and K. M. Karlsson, “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14, 779–789 (2012).
[Crossref]

Phys. Rev. (1)

G. Shirane, H. Danner, and R. Pepinshi, “Neutron diffraction study of orthorhombic BaTiO3,” Phys. Rev. 105, 856–860 (1957).
[Crossref]

Phys. Rev. B (4)

I. Borriello, G. Cantele, and D. Ninno, “Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides,” Phys. Rev. B 77, 235214 (2008).
[Crossref]

X. Hong, T. Ishihara, and A. V. Nurmikko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45, 6961–6964 (1992).
[Crossref]

P. Zhou, J. E. Drumheller, B. Patyal, and R. D. Willet, “Magnetic properties and critical behavior of quasi-two-dimensional systems [C6H5(CH2)nNH3]2CuBr4 with n = 1, 2, and 3,” Phys. Rev. B 45, 12365–12376 (1992).
[Crossref]

R. Valiente and F. Rodriguez, “Electron-phonon coupling in charge-transfer and crystal-field states of Jahn–Teller CuCl64- systems,” Phys. Rev. B 60, 9423–9429 (1999).
[Crossref]

Prog. Mater. Sci. (1)

S. S. Ray and M. Bousmina, “Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world,” Prog. Mater. Sci. 50, 962–1079 (2005).
[Crossref]

Prog. Photovoltaics Res. Appl. (3)

K. Efthymios and R. Bryce, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovoltaics Res. Appl. 19, 345–351 (2011).

C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, and D. Lincot, “Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers,” Prog. Photovoltaics Res. Appl. 18, 434–452 (2010).

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, and R. Wuerz, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovoltaics Res. Appl. 19, 894–897 (2011).

Prog. Polym. Sci. (1)

S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539–1641 (2003).
[Crossref]

RSC Adv. (1)

D. Q. Bi, S. J. Moon, L. Häggman, G. Boschloo, and L. Yang, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2mesostructures,” RSC Adv. 3, 18762–18766 (2013).

Sci. Rep. (1)

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, and T. Moehl, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).

Science (8)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science 334, 629–634 (2011).
[Crossref]

G. Hodes, “Perovskite-based solar cells,” Science 342, 317–318 (2013).
[Crossref]

R. F. Service, “Turning up the light,” Science 342, 794–797 (2013).
[Crossref]

G. H. Xing, N. Mathews, S. Y. Sun, S. S. Lim, and Y. M. Lam, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344–347 (2013).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, and M. J. P. Alcocer, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[Crossref]

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science 286, 945–947 (1999).
[Crossref]

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets,” Science 267, 1473–1476 (1995).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, “Fabrication of solid-state dye-sensitized TiO2solar cells combined with polypyrrole,” Sol. Energy Mater. Sol. Cells 55, 113–125 (1998).
[Crossref]

Solid State Commun. (1)

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, and K. Uchida, “Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Commun. 127, 619–623 (2003).
[Crossref]

Z. Naturforsch. (1)

Q. Xu, T. Educhi, H. Nakayama, N. Nakamura, and M. Kishita, “Molecular motions and phase transitions in solid CH3NH3PbX3 (X = Cl, Br, I) as studied by NMR and NQR,” Z. Naturforsch. 46, 240–246 (1991).

Other (1)

IEA-ETSAP and IRENA Technology Brief E11 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Efficiency evolution of different thin-film photovoltaic technologies.

Fig. 2.
Fig. 2.

Unit cell of basic AB X 3 perovskite structure. The B X 6 corner-sharing octahedra are evidenced. Adapted with permission from Ref. [70].

Fig. 3.
Fig. 3.

Architecture schematics of three types of photoanodes in perovskite solar cells: (a) mesoporous TiO 2 / Al 2 O 3 / ZrO 2 , (b)  TiO 2 / ZnO NWs, and (c) without the scaffold layer.

Fig. 4.
Fig. 4.

(a) UV-Vis absorbance of the FAPb I y B r 3 y perovskite with varying y, measured in an integrating sphere. (b) Corresponding steady-state photoluminescence spectra for the same films. (c) Photographs of the FAPb I y B r 3 y perovskite films with y increasing from 0 to 1 (left to right). Adapted with permission from Ref. [59].

Fig. 5.
Fig. 5.

Cross-sectional SEM images under lower magnification of completed solar cells constructed from (a) vapor-deposited perovskite film and (b) solution-processed perovskite film. (c) Schematic of dual-source thermal evaporation system for depositing the perovskite absorbers; the organic source was methylammonium iodide, and the inorganic source was PbC l 2 . (d) Current-density/voltage curves of the best-performing solution-processed (blue lines, triangles) and vapor-deposited (red lines, circles) p-i-n perovskite solar cells measured under simulated AM1.5 sunlight of 101 mW cm 2 irradiance (solid lines) and in the dark (dashed lines). Adapted with permission from Ref. [32].

Fig. 6.
Fig. 6.

(a) Photo image of flexible perovskite solar cells on the PET/ITO substrate and (b) device performance of the perovskite solar cells on the PET/ITO flexible substrate before and after bending. Adapted with permission from Ref. [60].

Fig. 7.
Fig. 7.

Time-resolved PL measurements taken at the peak emission wavelength of (a) mixed-halide perovskite and (b) triiodide perovskite with an electron (PCBM, blue triangles) or hole (spiro-OMeTAD, red circles) quencher layer, along with stretched exponential fits to the PMMA data (black squares) and fits to the quenching samples by using the diffusion model described in the text. A pulsed (0.3 to 10 MHz) excitation source at 507 nm with a fluence of 30 nJ / cm 2 impinged on the glass substrate side. (Inset) Comparison of the PL decay of the two perovskites (with PMMA) on a longer time scale, with lifetimes τ e quoted as the time taken to reach 1 / e of the initial intensity. Adapted with permission from Ref. [62].

Tables (1)

Tables Icon

Table 1. Summary of the Device Evolution and Performance of Perovskite Solar Cells

Metrics