Abstract

We present several laser sources dedicated to advanced microwave photonic applications. A quantum-dash mode-locked laser delivering a high-power, ultra-stable pulse train is first described. We measure a linewidth below 300 kHz at a 4.3 GHz repetition rate for an output power above 300 mW and a pulse duration of 1.1 ps after compression, making this source ideal for microwave signal sampling applications. A widely tunable (5–110 GHz), monolithic millimeter-wave transceiver based on the integration of two semiconductor distributed feedback lasers, four amplifiers, and two high-speed uni-traveling carrier photodiodes is then presented, together with its application to the wireless transmission of data at 200Mb/s. A frequency-agile laser source dedicated to microwave signal processing is then described. It delivers arbitrary frequency sweeps over 20 GHz with high precision and high speed (above 400GHz/ms). Finally, we report on a low-noise (below 1 kHz linewidth), solid-state, dual-frequency laser source. It allows independent tuning of the two frequencies in the perspective of the implementation of a tunable optoelectronic oscillator based on a high-Q optical resonator.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  2. D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [CrossRef]
  3. R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).
  4. G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [CrossRef]
  5. A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
    [CrossRef]
  6. P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
    [CrossRef]
  7. P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
    [CrossRef]
  8. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
    [CrossRef]
  9. M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
    [CrossRef]
  10. F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.
  11. K. Sato, “Optical pulse generation using Fabry–Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1288–1293 (2003).
    [CrossRef]
  12. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
    [CrossRef]
  13. A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in Proceedings of Microwave Photonics (2010), pp. 7–10.
  14. E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.
  15. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28, 526–538 (2010).
    [CrossRef]
  16. F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.
  17. M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
    [CrossRef]
  18. M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
    [CrossRef]
  19. K. Iiyama, W. Lu-Tang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14, 173–178 (1996).
    [CrossRef]
  20. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [CrossRef]
  21. Z. Barber, W. Babbitt, B. Kaylor, R. Reibel, and P. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49, 213–219 (2010).
    [CrossRef]
  22. V. Lavielle, I. Lorgeré, J. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28, 384–386 (2003).
    [CrossRef]
  23. C. Renner, R. Reibel, M. Tian, T. Chang, and W. R. Babbitt, “Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials,” J. Opt. Soc. Am. B 24, 2979–2987 (2007).
    [CrossRef]
  24. H. Linget, L. Morvan, J. Le Gouët, and A. Louchet-Chauvet, “Time reversal of optically carried radiofrequency signals in the microsecond range,” Opt. Lett. 38, 643–645 (2013).
    [CrossRef]
  25. O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
    [CrossRef]
  26. M. Tian, T. Chang, K. D. Merkel, W. Randall, and W. R. Babbitt, “Reconfiguration of spectral absorption features using a frequency-chirped laser pulse,” Appl. Opt. 50, 6548–6554 (2011).
    [CrossRef]
  27. Y. T. Chen, “Use of single-mode optical fiber in the stabilization of laser frequency,” Appl. Opt. 28, 2017–2021 (1989).
    [CrossRef]
  28. C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998).
    [CrossRef]
  29. G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27, 1114–1116 (2002).
    [CrossRef]
  30. V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
    [CrossRef]
  31. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
    [CrossRef]
  32. P. Roos, R. Reibel, T. Berg, B. Kaylor, Z. Barber, and W. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34, 3692–3694 (2009).
    [CrossRef]
  33. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17, 15991–15999 (2009).
    [CrossRef]
  34. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18, 3284–3297 (2010).
    [CrossRef]
  35. I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.
  36. L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011).
    [CrossRef]
  37. K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.
  38. M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
    [CrossRef]
  39. G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
    [CrossRef]
  40. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5  μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
    [CrossRef]
  41. J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31, 2919–2925 (2013).
    [CrossRef]
  42. K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.
  43. J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett. 32, 1090–1092 (2007).
    [CrossRef]
  44. G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

2013

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

H. Linget, L. Morvan, J. Le Gouët, and A. Louchet-Chauvet, “Time reversal of optically carried radiofrequency signals in the microsecond range,” Opt. Lett. 38, 643–645 (2013).
[CrossRef]

J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31, 2919–2925 (2013).
[CrossRef]

2011

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011).
[CrossRef]

M. Tian, T. Chang, K. D. Merkel, W. Randall, and W. R. Babbitt, “Reconfiguration of spectral absorption features using a frequency-chirped laser pulse,” Appl. Opt. 50, 6548–6554 (2011).
[CrossRef]

2010

2009

2008

2007

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
[CrossRef]

G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
[CrossRef]

J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett. 32, 1090–1092 (2007).
[CrossRef]

C. Renner, R. Reibel, M. Tian, T. Chang, and W. R. Babbitt, “Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials,” J. Opt. Soc. Am. B 24, 2979–2987 (2007).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

2006

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

2003

K. Sato, “Optical pulse generation using Fabry–Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1288–1293 (2003).
[CrossRef]

V. Lavielle, I. Lorgeré, J. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28, 384–386 (2003).
[CrossRef]

2002

2001

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

1998

1997

1996

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

K. Iiyama, W. Lu-Tang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14, 173–178 (1996).
[CrossRef]

1993

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

1989

1983

A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
[CrossRef]

Accard, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.

Akrout, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Alouini, M.

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Antic-Fidancev, E.

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

Babbitt, W.

Babbitt, W. R.

Babiel, S.

G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

Balakier, K.

K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.

Ballman, A. A.

A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
[CrossRef]

Barber, Z.

Baxter, G. W.

G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Berg, T.

Bhardwaj, A.

Bloch, E.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

Boggs, B.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Bourderionnet, J.

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Bretenaker, F.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5  μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
[CrossRef]

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
[CrossRef]

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Brown, H.

A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
[CrossRef]

Brunel, M.

Burrus, C. A.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Cannard, P. J.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Carpintero, G.

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

Chang, T.

Chen, Y. T.

Chien, M.-D.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Chtioui, M.

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Cibiel, G.

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.

Clairon, A.

Coldren, L. A.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28, 526–538 (2010).
[CrossRef]

Colice, M.

Cranch, G. A.

Cronin, R.

Crozatier, V.

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
[CrossRef]

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

Cthioui, M.

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Dawes, J. M.

G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Dekker, P.

G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Delfyett, P. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Dolfi, D.

Donnelly, J. P.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.

Duan, G. H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Ducloux, E.

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

Enard, A.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Faugeron, M.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Fice, M. J.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011).
[CrossRef]

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.

Gagnol, C.

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

Garcia, A.

G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

Gee, S.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Glass, A. M.

A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
[CrossRef]

Goldner, Ph.

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

Gopinath, J. T.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Gorju, G.

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
[CrossRef]

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Greiner, C.

Guillot-Noël, O.

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

Hamacher, M.

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

Hansch, T. W.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).

Hansen, P. B.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Hayashi, K.

K. Iiyama, W. Lu-Tang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14, 173–178 (1996).
[CrossRef]

Heidemann, R.

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Heidrich, H.

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

Holzwarth, R.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).

Huignard, J.

Huignard, J.-P.

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5  μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Iiyama, K.

K. Iiyama, W. Lu-Tang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14, 173–178 (1996).
[CrossRef]

Jacquet, J.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Jain, A.

Jiang, H.

Johansson, L. A.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28, 526–538 (2010).
[CrossRef]

Johnston, L.

Jucha, A.

Juodawlkis, P. W.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Kaylor, B.

Kéfélian, F.

Klamkin, J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Knowles, S.

G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Koren, U.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Lavielle, V.

V. Lavielle, I. Lorgeré, J. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28, 384–386 (2003).
[CrossRef]

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Le Floch, A.

Le Gouet, J.-L.

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Le Gouët, J.

Le Gouët, J.-L.

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
[CrossRef]

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

Le Gouezigou, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Lealman, I. F.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Lelarge, F.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.

Lemonde, P.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Leyva, V.

Li, K.

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

Linget, H.

Llopis, O.

J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31, 2919–2925 (2013).
[CrossRef]

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.

Loh, W.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Lorgere, I.

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Lorgeré, I.

Louchet, A.

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

Louchet-Chauvet, A.

Lu, M.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

Lu-Tang, W.

K. Iiyama, W. Lu-Tang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14, 173–178 (1996).
[CrossRef]

Lynch, C.

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.

Manager, L.

G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Martinez, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Maxin, J.

Menager, L.

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Merghem, K.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Merkel, K. D.

Merrer, P. H.

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.

Miller, B. I.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Missaggia, L. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Molin, S.

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Moodie, D. G.

Morvan, L.

H. Linget, L. Morvan, J. Le Gouët, and A. Louchet-Chauvet, “Time reversal of optically carried radiofrequency signals in the microsecond range,” Opt. Lett. 38, 643–645 (2013).
[CrossRef]

J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31, 2919–2925 (2013).
[CrossRef]

G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5  μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008).
[CrossRef]

J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett. 32, 1090–1092 (2007).
[CrossRef]

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

Mossberg, T. W.

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Naglic, L.

Nahory, R. E.

A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
[CrossRef]

Napoleone, A.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Newkirk, M. A.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

O’Donnell, F. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Oakley, D. C.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Park, H. C.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

Parker, J. S.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

Pavlovic, L.

Pillet, G.

Plant, J. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Ponnampalam, L.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011).
[CrossRef]

K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.

Pozzi, F.

Provost, J. G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Rakuljic, G.

Ramdane, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Randall, W.

Raybon, G.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Rehbein, W.

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

Reibel, R.

Renaud, C.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011).
[CrossRef]

K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.

Renaud, C. C.

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Renner, C.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Ripin, D. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

Ristic, S.

Robert, Y.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Robertson, M. J.

Rodwell, M. J.

Rodwell, M. J. W.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Rogers, D. C.

Roos, P.

Rosales, R.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

Rouvalis, E.

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

Saleh, K.

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Santarelli, G.

Sato, K.

K. Sato, “Optical pulse generation using Fabry–Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1288–1293 (2003).
[CrossRef]

Satyan, N.

Schroeter-Janssen, H.

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

Seeds, A. J.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011).
[CrossRef]

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.

Sivananthan, A.

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

Steinhausser, B.

Stöhr, A.

A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in Proceedings of Microwave Photonics (2010), pp. 7–10.

G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

Tell, B.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Tian, M.

Tonda, S.

Tonda-Goldstein, S.

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

Tourrenc, J.-P.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Tran, M.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Trommer, D.

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

Udem, T.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).

Vallet, M.

Valley, G.

van Dijk, F.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

Vasilyev, A.

Vidmar, M.

Vinet, E.

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Wang, T.

Yao, J.

Yariv, A.

Young, M. G.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

Zimmermann, M.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).

Appl. Opt.

Appl. Phys. Lett.

V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006).
[CrossRef]

Electron. Lett.

P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993).
[CrossRef]

IEEE J. Quantum Electron.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).

IEEE J. Sel. Top. Quantum Electron.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
[CrossRef]

M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013).
[CrossRef]

K. Sato, “Optical pulse generation using Fabry–Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1288–1293 (2003).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996).
[CrossRef]

M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013).
[CrossRef]

G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

J. Cryst. Growth

A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983).
[CrossRef]

J. Lightwave Technol.

J. Lumin.

O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Opt. Eng.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett. 32, 1090–1092 (2007).
[CrossRef]

P. Roos, R. Reibel, T. Berg, B. Kaylor, Z. Barber, and W. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34, 3692–3694 (2009).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997).
[CrossRef]

C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998).
[CrossRef]

G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27, 1114–1116 (2002).
[CrossRef]

V. Lavielle, I. Lorgeré, J. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28, 384–386 (2003).
[CrossRef]

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007).
[CrossRef]

H. Linget, L. Morvan, J. Le Gouët, and A. Louchet-Chauvet, “Time reversal of optically carried radiofrequency signals in the microsecond range,” Opt. Lett. 38, 643–645 (2013).
[CrossRef]

Other

K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.

G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.

K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.

A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in Proceedings of Microwave Photonics (2010), pp. 7–10.

E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.

F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.

F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Output power as a function of bias current.

Fig. 2.
Fig. 2.

Optical spectrum at 2 A.

Fig. 3.
Fig. 3.

RF spectrum with optical compression at 2.24 A (Iph=1.6mA).

Fig. 4.
Fig. 4.

Fundamental tone with and without optical compression.

Fig. 5.
Fig. 5.

Sampling scope trace of detected pulse train for passive mode-locking.

Fig. 6.
Fig. 6.

Autocorrelation trace with optical compression at 2.14 A.

Fig. 7.
Fig. 7.

General principle.

Fig. 8.
Fig. 8.

View of the monolithic chip for millimeter-wave transmission.

Fig. 9.
Fig. 9.

General view of the test setup.

Fig. 10.
Fig. 10.

Electrical and optical spectra obtained for different laser biasing conditions.

Fig. 11.
Fig. 11.

Wireless data transmission experiment diagram.

Fig. 12.
Fig. 12.

Eye diagram for 200MBit/s transmission.

Fig. 13.
Fig. 13.

Setup for precise control and stabilization of broadband arbitrary frequency sweeps by fibered self-heterodyne technique. Abbreviations are defined in the text.

Fig. 14.
Fig. 14.

(a) Setup for the predistortion correction, using an out-of-loop optical frequency discriminator. (b) Nominal frequency sweep. (c) Predistorted control voltage. (d), (e) Error from the nominal frequency sweep: in blue for the free-running laser (with the predistorted control voltage) and in green for the optoelectronic feedback loop in which the optical frequency sweep is phase locked to a reference electronic signal.

Fig. 15.
Fig. 15.

Solid-state DFL source cavity principle. V1 and V2 are the voltages that allow the independent control of the two frequencies.

Fig. 16.
Fig. 16.

Phase noise of one of the optical modes (red curve) and phase noise of the beat note at 10 GHz (blue curve).

Fig. 17.
Fig. 17.

Locking scheme of one of the DFL optical lines on a high-Q FRR. PDH: Pound–Drever–Hall setup. PID: proportional-integral-derivative controller.

Fig. 18.
Fig. 18.

Phase noise of one of the optical modes: free running (red curve) and locked (orange curve). Phase noise of the beat note when locked (blue curve).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f=c(λ2λ1)λ2λ1.
Elaser(t)=Alasersin(2πflasert+2π0tδflaser(t)dt+φlaser(t)),
verror=Aerrorsin(2πflaserτ+φlaser(t)φlaser(tτ)),
vref=Arefsin(2πfAOt+φref(t)),
φref(t)=2πtτtδflaser(t)dt2πτδflaser(t),

Metrics