Abstract

Microwave photonics (MWPs) uses the strength of photonic techniques to generate, process, control, and distribute microwave signals, combining the advantages of microwaves and photonics. As one of the main topics of MWP, radio-over-fiber (RoF) links can provide features that are very difficult or even impossible to achieve with traditional technologies. Meanwhile, a considerable number of signal-processing subsystems have been carried out in the field of MWP as they are instrumental for the implementation of many functionalities. However, there are still several challenges in strengthening the performance of the technology to support systems and applications with more complex structures, multiple functionality, larger bandwidth, and larger processing capability. In this paper, we identify some of the notable challenges in MWP and review our recent work. Applications and future direction of research are also discussed.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems

Yuting Fan, Jianqiang Li, Kun Xu, Hao Chen, Xun Lu, Yitang Dai, Feifei Yin, Yuefeng Ji, and Jintong Lin
Opt. Express 21(18) 20529-20543 (2013)

Silicon nitride microwave photonic circuits

Chris G. H. Roeloffzen, Leimeng Zhuang, Caterina Taddei, Arne Leinse, René G. Heideman, Paulus W. L. van Dijk, Ruud M. Oldenbeuving, David A. I. Marpaung, Maurizio Burla, and Klaus -J. Boller
Opt. Express 21(19) 22937-22961 (2013)

Reconfigurable Radio-Over-Fiber Networks [Invited]

J. J. Vegas Olmos and I. Tafur Monroy
J. Opt. Commun. Netw. 7(11) B23-B28 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007).
    [Crossref]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [Crossref]
  4. J. Capmany, G. Li, C. Lim, and J. Yao, “Microwave photonics: current challenges towards widespread application,” Opt. Express 21, 22862–22867 (2013).
    [Crossref]
  5. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  6. T. Berceli and P. Herczfeld, “Microwave photonics: a historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
    [Crossref]
  7. N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw. 8, 156–178 (2009).
    [Crossref]
  8. M. Sotom, B. Bénazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, Vienna, 2009, pp. 1–4.
  9. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31, 571–586 (2013).
    [Crossref]
  10. M. E. Manka, “Microwave photonics for electronic warfare applications,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2008), pp. 275–278.
  11. R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express 19, 5371–5378 (2011).
    [Crossref]
  12. C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
    [Crossref]
  13. D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28, 2456–2464 (2010).
    [Crossref]
  14. V. Urick, “Long-haul analog links tutorial,” in Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference, San Diego, California, 2010, pp. 1–39.
  15. J. Levine, “A review of time and frequency transfer methods,” Metrologia 45, S162–S174 (2008).
    [Crossref]
  16. Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21, 23433–23440 (2013).
    [Crossref]
  17. Y. Pei, J. Yao, K. Xu, J. Li, Y. Dai, and J. Lin, “Advanced DSP Technique for dynamic range improvement of a phase-modulation and coherent-detection microwave photonics link,” in International Topical Meeting on Microwave Photonics (IEEE, 2013) pp. 72–75.
  18. Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express 21, 3708–3714 (2013).
    [Crossref]
  19. H. Chen, J. Li, K. Xu, Y. Pei, Y. Dai, F. Yin, and J. Lin, “Experimental investigation on multi-dimensional digital predistortion for multi-band radio-over-fiber systems,” Opt. Express 22, 4649–4661 (2014).
    [Crossref]
  20. D. Lam, A. M. Fard, B. Buckley, and B. Jalali, “Digital broadband linearization of optical links,” Opt. Lett. 38, 446–448 (2013).
    [Crossref]
  21. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 22, 1775–1777 (2010).
    [Crossref]
  22. A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, Y. Ji, J. Lin, and G. Tang, “Stable radio-frequency delivery by λ dispersion-induced optical tunable delay,” Opt. Lett. 38, 2419–2421 (2013).
    [Crossref]
  23. S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
    [Crossref]
  24. P. F. Snawerdt, D. Koontz, R. K. Morse, and N. C. Hollingsworth, “Acousto-optic channelizer-based ultra-wideband signal processor,” U.S. Patent6,091,522 (July 18, 2000).
  25. W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
    [Crossref]
  26. D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelized receiver,” in International Topical Meeting on Microwave Photonics (MWP) (2005), pp. 249–252.
  27. X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35, 438–440 (2010).
    [Crossref]
  28. X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
    [Crossref]
  29. L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
    [Crossref]
  30. F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics assisted spectrum compression,” Opt. Lett. 38, 4386–4388 (2013).
    [Crossref]
  31. J. F. Cliche and B. Shillue, “Precision timing control for radio astronomy—Maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. Mag. 26(1), 19–26 (2006).
    [Crossref]
  32. X. Yang, K. Xu, J. Yin, Y. Dai, F. Yin, J. Li, H. Lu, T. Liu, and Y. Ji, “Optical frequency comb based multi-band microwave frequency conversion for satellite applications,” Opt. Express 22, 869–877 (2014).
    [Crossref]
  33. V. Torres-Company, D. Leaird, and A. Weiner, “Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping,” Opt. Lett. 37, 3993–3995 (2012).
    [Crossref]
  34. M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a radio over fibre distributed antenna network for combined In-building WLAN and 3G coverage,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, 2007, pp. 249–252.
  35. J. Z. Wang, H. L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Commun. 30, 675–683 (2012).
    [Crossref]
  36. Part 11: Wireless LAN Medium Access Control (MAC), and Physical Layer (PHY) Specifications [S]. IEEE Standard 802.11-2012, March2012.
  37. A. Zhou, M. Liu, and X. Jiao, “Convergence analysis and its application in the fixed point formulation of medium access in wireless network,” China Commun. 8, 43–49 (2011).
  38. S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).
  39. Y. Fan, J. Li, K. Xu, H. Chen, X. Lu, Y. Dai, F. Yin, Y. Ji, and J. Lin, “Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems,” Opt. Express 21, 20529–20543 (2013).
    [Crossref]

2014 (2)

2013 (8)

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics assisted spectrum compression,” Opt. Lett. 38, 4386–4388 (2013).
[Crossref]

Y. Fan, J. Li, K. Xu, H. Chen, X. Lu, Y. Dai, F. Yin, Y. Ji, and J. Lin, “Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems,” Opt. Express 21, 20529–20543 (2013).
[Crossref]

D. Lam, A. M. Fard, B. Buckley, and B. Jalali, “Digital broadband linearization of optical links,” Opt. Lett. 38, 446–448 (2013).
[Crossref]

A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, Y. Ji, J. Lin, and G. Tang, “Stable radio-frequency delivery by λ dispersion-induced optical tunable delay,” Opt. Lett. 38, 2419–2421 (2013).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21, 23433–23440 (2013).
[Crossref]

Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express 21, 3708–3714 (2013).
[Crossref]

J. Capmany, G. Li, C. Lim, and J. Yao, “Microwave photonics: current challenges towards widespread application,” Opt. Express 21, 22862–22867 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31, 571–586 (2013).
[Crossref]

2012 (4)

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

V. Torres-Company, D. Leaird, and A. Weiner, “Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping,” Opt. Lett. 37, 3993–3995 (2012).
[Crossref]

J. Z. Wang, H. L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Commun. 30, 675–683 (2012).
[Crossref]

2011 (2)

A. Zhou, M. Liu, and X. Jiao, “Convergence analysis and its application in the fixed point formulation of medium access in wireless network,” China Commun. 8, 43–49 (2011).

R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express 19, 5371–5378 (2011).
[Crossref]

2010 (4)

T. Berceli and P. Herczfeld, “Microwave photonics: a historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28, 2456–2464 (2010).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 22, 1775–1777 (2010).
[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35, 438–440 (2010).
[Crossref]

2009 (3)

2008 (1)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45, S162–S174 (2008).
[Crossref]

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007).
[Crossref]

2006 (4)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[Crossref]

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
[Crossref]

J. F. Cliche and B. Shillue, “Precision timing control for radio astronomy—Maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. Mag. 26(1), 19–26 (2006).
[Crossref]

2001 (1)

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Ackerman, E.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Alphones, A.

Austin, M. W.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
[Crossref]

Bénazet, B.

M. Sotom, B. Bénazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, Vienna, 2009, pp. 1–4.

Berceli, T.

T. Berceli and P. Herczfeld, “Microwave photonics: a historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

Betts, G.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Brook, J. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Bucholtz, F.

Buckley, B.

Cabon, B.

Canning, J.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
[Crossref]

Capmany, J.

Chen, H.

Cliche, J. F.

J. F. Cliche and B. Shillue, “Precision timing control for radio astronomy—Maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. Mag. 26(1), 19–26 (2006).
[Crossref]

Cox, C.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Crisp, M. J.

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a radio over fibre distributed antenna network for combined In-building WLAN and 3G coverage,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, 2007, pp. 249–252.

Csörnyei, M.

Cui, Y.

Dai, J.

Dai, Y.

H. Chen, J. Li, K. Xu, Y. Pei, Y. Dai, F. Yin, and J. Lin, “Experimental investigation on multi-dimensional digital predistortion for multi-band radio-over-fiber systems,” Opt. Express 22, 4649–4661 (2014).
[Crossref]

X. Yang, K. Xu, J. Yin, Y. Dai, F. Yin, J. Li, H. Lu, T. Liu, and Y. Ji, “Optical frequency comb based multi-band microwave frequency conversion for satellite applications,” Opt. Express 22, 869–877 (2014).
[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics assisted spectrum compression,” Opt. Lett. 38, 4386–4388 (2013).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21, 23433–23440 (2013).
[Crossref]

Y. Fan, J. Li, K. Xu, H. Chen, X. Lu, Y. Dai, F. Yin, Y. Ji, and J. Lin, “Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems,” Opt. Express 21, 20529–20543 (2013).
[Crossref]

Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express 21, 3708–3714 (2013).
[Crossref]

A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, Y. Ji, J. Lin, and G. Tang, “Stable radio-frequency delivery by λ dispersion-induced optical tunable delay,” Opt. Lett. 38, 2419–2421 (2013).
[Crossref]

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

Y. Pei, J. Yao, K. Xu, J. Li, Y. Dai, and J. Lin, “Advanced DSP Technique for dynamic range improvement of a phase-modulation and coherent-detection microwave photonics link,” in International Topical Meeting on Microwave Photonics (IEEE, 2013) pp. 72–75.

Davis, R. L.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Edvell, L. G.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelized receiver,” in International Topical Meeting on Microwave Photonics (MWP) (2005), pp. 249–252.

Englund, M. A.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelized receiver,” in International Topical Meeting on Microwave Photonics (MWP) (2005), pp. 249–252.

Fan, Y.

Fard, A. M.

Gao, Y.

Gasulla, I.

Gomes, N. J.

Hafid, A.

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

Herczfeld, P.

T. Berceli and P. Herczfeld, “Microwave photonics: a historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

Hollingsworth, N. C.

P. F. Snawerdt, D. Koontz, R. K. Morse, and N. C. Hollingsworth, “Acousto-optic channelizer-based ultra-wideband signal processor,” U.S. Patent6,091,522 (July 18, 2000).

Huang, S.

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

Hunter, D. B.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelized receiver,” in International Topical Meeting on Microwave Photonics (MWP) (2005), pp. 249–252.

Iezekiel, S.

Jalali, B.

Ji, Y.

Jiao, X.

A. Zhou, M. Liu, and X. Jiao, “Convergence analysis and its application in the fixed point formulation of medium access in wireless network,” China Commun. 8, 43–49 (2011).

Jung, T. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Koontz, D.

P. F. Snawerdt, D. Koontz, R. K. Morse, and N. C. Hollingsworth, “Acousto-optic channelizer-based ultra-wideband signal processor,” U.S. Patent6,091,522 (July 18, 2000).

Lam, D.

Le Kernec, A.

M. Sotom, B. Bénazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, Vienna, 2009, pp. 1–4.

Leaird, D.

Lembo, L. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Lethien, C.

Levine, J.

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45, S162–S174 (2008).
[Crossref]

Li, G.

Li, J.

H. Chen, J. Li, K. Xu, Y. Pei, Y. Dai, F. Yin, and J. Lin, “Experimental investigation on multi-dimensional digital predistortion for multi-band radio-over-fiber systems,” Opt. Express 22, 4649–4661 (2014).
[Crossref]

X. Yang, K. Xu, J. Yin, Y. Dai, F. Yin, J. Li, H. Lu, T. Liu, and Y. Ji, “Optical frequency comb based multi-band microwave frequency conversion for satellite applications,” Opt. Express 22, 869–877 (2014).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21, 23433–23440 (2013).
[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics assisted spectrum compression,” Opt. Lett. 38, 4386–4388 (2013).
[Crossref]

Y. Fan, J. Li, K. Xu, H. Chen, X. Lu, Y. Dai, F. Yin, Y. Ji, and J. Lin, “Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems,” Opt. Express 21, 20529–20543 (2013).
[Crossref]

Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express 21, 3708–3714 (2013).
[Crossref]

A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, Y. Ji, J. Lin, and G. Tang, “Stable radio-frequency delivery by λ dispersion-induced optical tunable delay,” Opt. Lett. 38, 2419–2421 (2013).
[Crossref]

Y. Pei, J. Yao, K. Xu, J. Li, Y. Dai, and J. Lin, “Advanced DSP Technique for dynamic range improvement of a phase-modulation and coherent-detection microwave photonics link,” in International Topical Meeting on Microwave Photonics (IEEE, 2013) pp. 72–75.

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 22, 1775–1777 (2010).
[Crossref]

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a radio over fibre distributed antenna network for combined In-building WLAN and 3G coverage,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, 2007, pp. 249–252.

Lim, C.

Lin, J.

H. Chen, J. Li, K. Xu, Y. Pei, Y. Dai, F. Yin, and J. Lin, “Experimental investigation on multi-dimensional digital predistortion for multi-band radio-over-fiber systems,” Opt. Express 22, 4649–4661 (2014).
[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics assisted spectrum compression,” Opt. Lett. 38, 4386–4388 (2013).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21, 23433–23440 (2013).
[Crossref]

Y. Fan, J. Li, K. Xu, H. Chen, X. Lu, Y. Dai, F. Yin, Y. Ji, and J. Lin, “Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems,” Opt. Express 21, 20529–20543 (2013).
[Crossref]

A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, Y. Ji, J. Lin, and G. Tang, “Stable radio-frequency delivery by λ dispersion-induced optical tunable delay,” Opt. Lett. 38, 2419–2421 (2013).
[Crossref]

Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express 21, 3708–3714 (2013).
[Crossref]

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

Y. Pei, J. Yao, K. Xu, J. Li, Y. Dai, and J. Lin, “Advanced DSP Technique for dynamic range improvement of a phase-modulation and coherent-detection microwave photonics link,” in International Topical Meeting on Microwave Photonics (IEEE, 2013) pp. 72–75.

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
[Crossref]

Liu, M.

A. Zhou, M. Liu, and X. Jiao, “Convergence analysis and its application in the fixed point formulation of medium access in wireless network,” China Commun. 8, 43–49 (2011).

Liu, T.

Lloret, J.

Lodenkamper, R.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Lu, H.

Lu, X.

Luo, B.

Maignan, M.

M. Sotom, B. Bénazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, Vienna, 2009, pp. 1–4.

Manka, M. E.

M. E. Manka, “Microwave photonics for electronic warfare applications,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2008), pp. 275–278.

Mitchell, A.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
[Crossref]

Mitchell, J. E.

Mora, J.

Morant, M.

Morse, R. K.

P. F. Snawerdt, D. Koontz, R. K. Morse, and N. C. Hollingsworth, “Acousto-optic channelizer-based ultra-wideband signal processor,” U.S. Patent6,091,522 (July 18, 2000).

Nguyen, L. V. T.

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
[Crossref]

Niu, J.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

Nkansah, A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Pan, W.

Pei, Y.

Penty, R. V.

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a radio over fibre distributed antenna network for combined In-building WLAN and 3G coverage,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, 2007, pp. 249–252.

Prince, J.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Ren, T.

Sales, S.

Sancho, J.

Schermer, R. T.

Seeds, A. J.

Shillue, B.

J. F. Cliche and B. Shillue, “Precision timing control for radio astronomy—Maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. Mag. 26(1), 19–26 (2006).
[Crossref]

Snawerdt, P. F.

P. F. Snawerdt, D. Koontz, R. K. Morse, and N. C. Hollingsworth, “Acousto-optic channelizer-based ultra-wideband signal processor,” U.S. Patent6,091,522 (July 18, 2000).

Sotom, M.

M. Sotom, B. Bénazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, Vienna, 2009, pp. 1–4.

Stöhr, A.

Tang, G.

Torres-Company, V.

Urick, V.

V. Urick, “Long-haul analog links tutorial,” in Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference, San Diego, California, 2010, pp. 1–39.

Villarruel, C. A.

Wake, D.

Wang, J. Z.

J. Z. Wang, H. L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Commun. 30, 675–683 (2012).
[Crossref]

Wang, Q.

Wang, R.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

Wang, S.

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

Wang, W.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Wei, J.

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

Weiner, A.

White, I. H.

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a radio over fibre distributed antenna network for combined In-building WLAN and 3G coverage,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, 2007, pp. 249–252.

Williams, K. J.

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
[Crossref]

Wonfor, A.

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a radio over fibre distributed antenna network for combined In-building WLAN and 3G coverage,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, 2007, pp. 249–252.

Wu, M. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

Xie, X.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

Xiong, C.

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

Xu, K.

H. Chen, J. Li, K. Xu, Y. Pei, Y. Dai, F. Yin, and J. Lin, “Experimental investigation on multi-dimensional digital predistortion for multi-band radio-over-fiber systems,” Opt. Express 22, 4649–4661 (2014).
[Crossref]

X. Yang, K. Xu, J. Yin, Y. Dai, F. Yin, J. Li, H. Lu, T. Liu, and Y. Ji, “Optical frequency comb based multi-band microwave frequency conversion for satellite applications,” Opt. Express 22, 869–877 (2014).
[Crossref]

F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, “Multifrequency radio frequency sensing with photonics assisted spectrum compression,” Opt. Lett. 38, 4386–4388 (2013).
[Crossref]

Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express 21, 3708–3714 (2013).
[Crossref]

A. Zhang, Y. Dai, F. Yin, T. Ren, K. Xu, J. Li, Y. Ji, J. Lin, and G. Tang, “Stable radio-frequency delivery by λ dispersion-induced optical tunable delay,” Opt. Lett. 38, 2419–2421 (2013).
[Crossref]

Y. Fan, J. Li, K. Xu, H. Chen, X. Lu, Y. Dai, F. Yin, Y. Ji, and J. Lin, “Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems,” Opt. Express 21, 20529–20543 (2013).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21, 23433–23440 (2013).
[Crossref]

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

Y. Pei, J. Yao, K. Xu, J. Li, Y. Dai, and J. Lin, “Advanced DSP Technique for dynamic range improvement of a phase-modulation and coherent-detection microwave photonics link,” in International Topical Meeting on Microwave Photonics (IEEE, 2013) pp. 72–75.

Yan, L.

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” Opt. Lett. 35, 438–440 (2010).
[Crossref]

Yang, X.

Yao, J.

J. Capmany, G. Li, C. Lim, and J. Yao, “Microwave photonics: current challenges towards widespread application,” Opt. Express 21, 22862–22867 (2013).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007).
[Crossref]

Y. Pei, J. Yao, K. Xu, J. Li, Y. Dai, and J. Lin, “Advanced DSP Technique for dynamic range improvement of a phase-modulation and coherent-detection microwave photonics link,” in International Topical Meeting on Microwave Photonics (IEEE, 2013) pp. 72–75.

Yin, F.

Yin, J.

Zeng, F.

Zhang, A.

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 22, 1775–1777 (2010).
[Crossref]

Zhang, J.

Zhang, Z.

Zhao, H.

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 22, 1775–1777 (2010).
[Crossref]

Zhou, A.

A. Zhou, M. Liu, and X. Jiao, “Convergence analysis and its application in the fixed point formulation of medium access in wireless network,” China Commun. 8, 43–49 (2011).

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 22, 1775–1777 (2010).
[Crossref]

Zhu, H. L.

J. Z. Wang, H. L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Commun. 30, 675–683 (2012).
[Crossref]

Zou, X.

China Commun. (2)

A. Zhou, M. Liu, and X. Jiao, “Convergence analysis and its application in the fixed point formulation of medium access in wireless network,” China Commun. 8, 43–49 (2011).

S. Wang, A. Hafid, H. Zhao, S. Huang, C. Xiong, and J. Wei, “Towards wide-open, adaptable DCF implementation for dynamic networks,” China Commun. 8, 77–89 (2012).

IEEE Control Syst. Mag. (1)

J. F. Cliche and B. Shillue, “Precision timing control for radio astronomy—Maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. Mag. 26(1), 19–26 (2006).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

J. Z. Wang, H. L. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Areas Commun. 30, 675–683 (2012).
[Crossref]

IEEE Photon. J. (1)

X. Xie, Y. Dai, K. Xu, J. Niu, R. Wang, L. Yan, and J. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photon. J. 4, 1196–1202 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. V. T. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett. 21, 642–644 (2009).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 22, 1775–1777 (2010).
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

T. Berceli and P. Herczfeld, “Microwave photonics: a historical perspective,” IEEE Trans. Microwave Theory Tech. 58, 2992–3000 (2010).
[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry–Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microwave Theory Tech. 54, 868–872 (2006).
[Crossref]

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brook, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microwave Theory Tech. 49, 1996–2001 (2001).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

Metrologia (1)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45, S162–S174 (2008).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Opt. Express (7)

J. Capmany, G. Li, C. Lim, and J. Yao, “Microwave photonics: current challenges towards widespread application,” Opt. Express 21, 22862–22867 (2013).
[Crossref]

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21, 23433–23440 (2013).
[Crossref]

Y. Pei, K. Xu, J. Li, A. Zhang, Y. Dai, Y. Ji, and J. Lin, “Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals,” Opt. Express 21, 3708–3714 (2013).
[Crossref]

H. Chen, J. Li, K. Xu, Y. Pei, Y. Dai, F. Yin, and J. Lin, “Experimental investigation on multi-dimensional digital predistortion for multi-band radio-over-fiber systems,” Opt. Express 22, 4649–4661 (2014).
[Crossref]

R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express 19, 5371–5378 (2011).
[Crossref]

Y. Fan, J. Li, K. Xu, H. Chen, X. Lu, Y. Dai, F. Yin, Y. Ji, and J. Lin, “Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems,” Opt. Express 21, 20529–20543 (2013).
[Crossref]

X. Yang, K. Xu, J. Yin, Y. Dai, F. Yin, J. Li, H. Lu, T. Liu, and Y. Ji, “Optical frequency comb based multi-band microwave frequency conversion for satellite applications,” Opt. Express 22, 869–877 (2014).
[Crossref]

Opt. Lett. (5)

Other (8)

Y. Pei, J. Yao, K. Xu, J. Li, Y. Dai, and J. Lin, “Advanced DSP Technique for dynamic range improvement of a phase-modulation and coherent-detection microwave photonics link,” in International Topical Meeting on Microwave Photonics (IEEE, 2013) pp. 72–75.

V. Urick, “Long-haul analog links tutorial,” in Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference, San Diego, California, 2010, pp. 1–39.

M. Sotom, B. Bénazet, A. Le Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceedings of the 35th European Conference on Optical Communication, Vienna, 2009, pp. 1–4.

M. E. Manka, “Microwave photonics for electronic warfare applications,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2008), pp. 275–278.

D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelized receiver,” in International Topical Meeting on Microwave Photonics (MWP) (2005), pp. 249–252.

P. F. Snawerdt, D. Koontz, R. K. Morse, and N. C. Hollingsworth, “Acousto-optic channelizer-based ultra-wideband signal processor,” U.S. Patent6,091,522 (July 18, 2000).

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a radio over fibre distributed antenna network for combined In-building WLAN and 3G coverage,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, 2007, pp. 249–252.

Part 11: Wireless LAN Medium Access Control (MAC), and Physical Layer (PHY) Specifications [S]. IEEE Standard 802.11-2012, March2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Fundamental setup of externally modulated RoF link.
Fig. 2.
Fig. 2. (a) Experimental arrangement for the IMD3 suppression in analog fiber-optic link employing OCB processing. Electrical spectra of the output fundamental signal and their IMD3s for (b) the conventional link without any processing in the optical domain and (c) the proposed link with OCB processing. (d) Two-tone measurement results for the compensated and uncompensated links. ESA, electrical spectrum analyzer.
Fig. 3.
Fig. 3. (a) Experimental setup of the proposed phase error correction system. BPF: bandpass filter. (b) RMS jitter of the remote RF signal without (blue line) and with (red line) phase error correction. (c) SSB phase noise of the RF source and signal at the remote end.
Fig. 4.
Fig. 4. Schematic of the system that combines broadband photonics and high-resolution electronics.
Fig. 5.
Fig. 5. Configuration of the coherent OFC-based channelization scheme. PBS, polarization beam splitter; PBC, polarization beam coupler.
Fig. 6.
Fig. 6. Output of the first, fourth, and sixth channels when RF signals of 4.111, 5.55, and 6.63 GHz are inputted, respectively.
Fig. 7.
Fig. 7. (a) Output of the fourth, fifth, and sixth channels when 6.055 GHz signal is inputted. (b) Normalized channel response of the third channel with center frequency of 5 GHz and channel width of 500 MHz.
Fig. 8.
Fig. 8. (a) System configuration of the proposed scheme. (b) Spectrum of a single tone. (c) Spectrum of PRBS. * denotes convolution. (d) Spectrum of the encoded signal. The dashed green line indicates the frequency response of the LPF. (e) Enlargement of the LPF’s passband. The dashed red line denotes the case of inputting another RF tone. PPG, pulse pattern generator; AWG, arbitrary waveform generator.
Fig. 9.
Fig. 9. Experimental results. (a) Self-correlation function of p(f). (b) Input and recovered spectrum of a RF signal with 20 tones. (c) Input and recovered spectrum of a RF signal with 40 tones ranging from 0.1 to 1 GHz.
Fig. 10.
Fig. 10. (a) Schematic diagram of multiple LO generation, electro-optical mixing, and channelized heterodyne detection. (b) Illustration of multiband LO generation. (c) Illustration of signal multicasting and the instantaneous bandwidth.
Fig. 11.
Fig. 11. (a) Dual coherent OFCs with 18 GHz center frequency shift and 38 and 30 GHz mode spacing. (b) Channelized dual OFCs, with one carrying the signal. (c)–(f) Generated multiple LOs within different bands. (g)–(i) Multicast signals within different bands. (j) EVM test results of the multicast signals.
Fig. 12.
Fig. 12. Typical simulcast WLAN RoF DAS architecture.
Fig. 13.
Fig. 13. Comparison of fiber effect via different fiber delays between RAU-A and RAU-B. Solid lines represent basic access mode and dashed lines represent RTS/CTS exchange mode.
Fig. 14.
Fig. 14. (a) Normalized throughputs for the basic-access DCF mode, DCF in RTS/CTS mode, and adaptive PCF as a function of the number of RAUs assuming identical fiber length. (b) Throughput performance of each RAU as the function the length of one of the fiber links assuming different fiber lengths in a two-RAU scenario.
Fig. 15.
Fig. 15. Conceptual architecture of multiband satellite repeater based on OFCs. LNA: low noise amplifier.
Fig. 16.
Fig. 16. Conceptual architecture of a next-generation intelligent wireless information system.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

X(f)=0BADCP(ff0)×P*(f+f)df={0BADC|P(ff0)|2dfP0BADCf=f0N(f)otherwise,
fLO(i)=δs+i·|δ1δ2|,
nδs|δ1δ2|andnBWδs|δ1δ2|,
fout(i)=|fLO(i)fin|.
IBW(i)=δs+i·|δ1δ2|.

Metrics