Abstract

A novel scheme for the generation of background-free pulsed microwave signals is proposed and experimentally demonstrated based on spectral shaping, frequency-to-time mapping, and balanced photodetection. In the proposed scheme, the optical spectral shaper, which consists of a differential group delay (DGD) element, two polarization controllers, and a polarization beam splitter, has two outputs with complementary power transfer functions. By passing a short optical pulse through the spectral shaper and a dispersive element (DE), a pulsed microwave signal is obtained after balanced photodetection. Thanks to the balanced photodetection, the low-frequency components (i.e., the background signal) in the electrical spectrum is suppressed, leading to the generation of a background-free pulsed microwave signal. Meanwhile, the spectral power of the obtained microwave signal is enhanced compared to that obtained by single-end detection. Experimental results for the generation of a pulsed microwave signal centered at 12.46 GHz show that the background signal can be suppressed by more than 30 dB, and the spectral power is increased by 5.5 dB. In addition, the central frequency of the obtained background-free pulsed microwave signal can be tuned by changing the DGD introduced by the DGD element, and/or by changing the dispersion of the DE.

© 2014 Chinese Laser Press

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  3. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
    [CrossRef]
  4. J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
    [CrossRef]
  5. E. H. Bernhardi, M. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Worhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual wavelength Al2O3:Yb3+ distributed feedback waveguide laser,” Opt. Lett. 37, 181–183 (2012).
    [CrossRef]
  6. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
    [CrossRef]
  7. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Photon. Technol. Lett. 15, 226–228 (2005).
  8. H. Chi, F. Zeng, and J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19, 668–670 (2007).
    [CrossRef]
  9. F. Zhang, X. Ge, and S. Pan, “Photonic generation of pulsed microwave signals with tunable frequency and phase based on spectral-shaping and frequency-to-time mapping,” Opt. Lett. 38, 4256–4259 (2013).
    [CrossRef]
  10. H. Y. Jiang, L. S. Yan, Y. F. Sun, J. Ye, W. Pan, B. Luo, and X. H. Zou, “Photonic arbitrary waveform generation based on crossed frequency to time mapping,” Opt. Express 21, 6488–6494 (2013).
    [CrossRef]
  11. M. A. Muriel, J. Azana, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24, 1–3 (1999).
    [CrossRef]
  12. J. McKinney, “Background free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22, 1193–1195 (2010).
    [CrossRef]
  13. M. Abtahi, J. Magne, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: analysis and experiment,” J. Lightwave Technol. 26, 628–635 (2008).
  14. M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of arbitrary UWB waveforms by spectral pulse shaping and thermally-controlled apodized FBGs,” J. Lightwave Technol. 27, 5276–5283 (2009).
    [CrossRef]
  15. Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
    [CrossRef]
  16. W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38, 3441–3444 (2013).
    [CrossRef]

2013

2012

2011

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
[CrossRef]

2010

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

J. McKinney, “Background free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22, 1193–1195 (2010).
[CrossRef]

2009

2008

2007

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

H. Chi, F. Zeng, and J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19, 668–670 (2007).
[CrossRef]

2005

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Photon. Technol. Lett. 15, 226–228 (2005).

2003

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[CrossRef]

1999

Abtahi, M.

Azana, J.

Bernhardi, E. H.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Carballar, A.

Chi, H.

H. Chi, F. Zeng, and J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19, 668–670 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[CrossRef]

Dastmalchi, M.

de Ridder, R. M.

Du, Y.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
[CrossRef]

Ge, X.

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[CrossRef]

Jiang, H. Y.

Khan, M.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

LaRochelle, S.

Leaird, D.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Li, M.

Li, W.

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Photon. Technol. Lett. 15, 226–228 (2005).

Liu, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
[CrossRef]

Luo, B.

Magne, J.

McKinney, J.

J. McKinney, “Background free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22, 1193–1195 (2010).
[CrossRef]

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Photon. Technol. Lett. 15, 226–228 (2005).

Mirshafiei, M.

Muriel, M. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Pan, S.

Pan, W.

Pollnau, M.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Roeloffzen, C. G. H.

Rusch, L. A.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Sun, Y. F.

van Wolferen, H. A. G. M.

Wang, H.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
[CrossRef]

Wang, L.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
[CrossRef]

Wang, L. X.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Photon. Technol. Lett. 15, 226–228 (2005).

Worhoff, K.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Yan, L. S.

Yao, J. P.

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

H. Chi, F. Zeng, and J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19, 668–670 (2007).
[CrossRef]

Ye, J.

Zeng, F.

H. Chi, F. Zeng, and J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19, 668–670 (2007).
[CrossRef]

Zhang, F.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Zheng, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
[CrossRef]

Zhu, N.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
[CrossRef]

Zhu, N. H.

Zou, X. H.

IEEE Photon. Technol. Lett.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15, 581–583 (2003).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Photon. Technol. Lett. 15, 226–228 (2005).

H. Chi, F. Zeng, and J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19, 668–670 (2007).
[CrossRef]

J. McKinney, “Background free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22, 1193–1195 (2010).
[CrossRef]

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25, 335–337 (2013).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Opt. Commun.

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun. 284, 3723–3736 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics