Abstract

An optical length-change measurement technique is proposed based on an incoherent microwave photonic filter (MPF). The optical length under testing is inserted into an optical link of a single-bandpass MPF based on a polarization-processed incoherent light source. The key feature of the proposed technique is to transfer the length measurement in the optical domain to the electrical domain. In the electrical domain, the measurement resolution is extremely high thanks to the high-resolution measurement of microwave frequency response. In addition, since the MPF is a single-bandpass MPF, the optical length is uniquely determined by the central frequency of the MPF. A detailed investigation of the relation between the center frequency of the MPF and the optical length change is implemented. A measurement experiment is also demonstrated, and the experimental results show that the proposed technique has a measurement sensitivity of 1 GHz/mm with a high length-measurement resolution of 1 pm in theory. The proposed approach has the advantages of high sensitivity, high resolution, and immunity to power variation in electronic and optical links.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter

Yiping Wang, Xiaoqi Ni, Ming Wang, Yifeng Cui, and Qingyun Shi
Opt. Express 25(2) 644-653 (2017)

Widely tunable single bandpass microwave photonic filter based on Brillouin-assisted optical carrier recovery

Wen Ting Wang, Jian Guo Liu, Wen Hui Sun, Wei Yu Wang, Sun Long Wang, and Ning Hua Zhu
Opt. Express 22(24) 29304-29313 (2014)

High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique

Yiping Wang, Ming Wang, Wei Xia, and Xiaoqi Ni
Opt. Express 24(16) 17960-17967 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, “Fiber optics in sensing and measurement,” IEEE J. Sel. Top. Quantum Electron. 6, 1014–1021 (2000).
    [Crossref]
  2. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
    [Crossref]
  3. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197 (2004).
    [Crossref]
  4. B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
    [Crossref]
  5. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
    [Crossref]
  6. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  7. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31, 571–586 (2013).
    [Crossref]
  8. E. C. Heyd and R. A. Minasian, “A solution to the synthesis problem of recirculating optical delay line filter,” IEEE Photon. Technol. Lett. 6, 833–835 (1994).
    [Crossref]
  9. J. Capmany and J. Martin, “Solutions to the synthesis problem of optical delay line filters,” Opt. Lett. 20, 2438–2440 (1995).
    [Crossref]
  10. G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).
    [Crossref]
  11. D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
    [Crossref]
  12. W. Zhang, J. A. R. Williams, and I. Bennion, “Polarization synthesized optical transversal filter employing high birefringence fiber gratings,” IEEE Photon. Technol. Lett. 13, 523–525 (2001).
    [Crossref]
  13. T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
    [Crossref]
  14. D. Pastor, J. Capmany, and B. Ortega, “Experimental demonstration of parallel fiber-optic-based RF filtering using WDM techniques,” IEEE Photon. Technol. Lett. 12, 77–78 (2000).
    [Crossref]
  15. V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonics microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
    [Crossref]
  16. D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
    [Crossref]
  17. K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, “A novel tunable fiber-optic microwave filter using multimode DCF,” IEEE Photon. Technol. Lett. 15, 969–971 (2003).
    [Crossref]
  18. H. Fu, D. Chen, H. Ou, and S. He, “Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter,” Microwave Opt. Technol. Lett. 49, 2382–2386 (2007).
    [Crossref]
  19. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 60, 1287–1296 (2012).
    [Crossref]
  20. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express 19, 18423–18429 (2011).
    [Crossref]
  21. W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
    [Crossref]
  22. H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38, 4857–4860 (2013).
    [Crossref]
  23. T. Wei, J. Huang, X. Lan, Q. Han, and H. Xiao, “Optical fiber sensor based on a radio-frequency Mach-Zehnder interferometer,” Opt. Lett. 37, 647–649 (2012).
    [Crossref]
  24. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24, 2500 (2006).
    [Crossref]
  25. X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
    [Crossref]

2013 (3)

2012 (2)

T. Wei, J. Huang, X. Lan, Q. Han, and H. Xiao, “Optical fiber sensor based on a radio-frequency Mach-Zehnder interferometer,” Opt. Lett. 37, 647–649 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 60, 1287–1296 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (1)

2007 (1)

H. Fu, D. Chen, H. Ou, and S. He, “Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter,” Microwave Opt. Technol. Lett. 49, 2382–2386 (2007).
[Crossref]

2006 (3)

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
[Crossref]

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24, 2500 (2006).
[Crossref]

2004 (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197 (2004).
[Crossref]

2003 (3)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[Crossref]

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonics microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, “A novel tunable fiber-optic microwave filter using multimode DCF,” IEEE Photon. Technol. Lett. 15, 969–971 (2003).
[Crossref]

2001 (2)

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]

W. Zhang, J. A. R. Williams, and I. Bennion, “Polarization synthesized optical transversal filter employing high birefringence fiber gratings,” IEEE Photon. Technol. Lett. 13, 523–525 (2001).
[Crossref]

2000 (3)

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).
[Crossref]

B. Culshaw, “Fiber optics in sensing and measurement,” IEEE J. Sel. Top. Quantum Electron. 6, 1014–1021 (2000).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Experimental demonstration of parallel fiber-optic-based RF filtering using WDM techniques,” IEEE Photon. Technol. Lett. 12, 77–78 (2000).
[Crossref]

1997 (1)

T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
[Crossref]

1995 (1)

1994 (2)

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[Crossref]

E. C. Heyd and R. A. Minasian, “A solution to the synthesis problem of recirculating optical delay line filter,” IEEE Photon. Technol. Lett. 6, 833–835 (1994).
[Crossref]

Andrés, M. V.

Bennion, I.

W. Zhang, J. A. R. Williams, and I. Bennion, “Polarization synthesized optical transversal filter employing high birefringence fiber gratings,” IEEE Photon. Technol. Lett. 13, 523–525 (2001).
[Crossref]

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31, 571–586 (2013).
[Crossref]

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24, 2500 (2006).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Experimental demonstration of parallel fiber-optic-based RF filtering using WDM techniques,” IEEE Photon. Technol. Lett. 12, 77–78 (2000).
[Crossref]

T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
[Crossref]

J. Capmany and J. Martin, “Solutions to the synthesis problem of optical delay line filters,” Opt. Lett. 20, 2438–2440 (1995).
[Crossref]

Chen, D.

H. Fu, D. Chen, H. Ou, and S. He, “Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter,” Microwave Opt. Technol. Lett. 49, 2382–2386 (2007).
[Crossref]

Choi, S.

K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, “A novel tunable fiber-optic microwave filter using multimode DCF,” IEEE Photon. Technol. Lett. 15, 969–971 (2003).
[Crossref]

Choi, W. Y.

K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, “A novel tunable fiber-optic microwave filter using multimode DCF,” IEEE Photon. Technol. Lett. 15, 969–971 (2003).
[Crossref]

Corral, J. L.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonics microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Cruz, J. L.

Culshaw, B.

B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26, 1064–1078 (2008).
[Crossref]

B. Culshaw, “Fiber optics in sensing and measurement,” IEEE J. Sel. Top. Quantum Electron. 6, 1014–1021 (2000).
[Crossref]

Cusick, T. A.

T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
[Crossref]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197 (2004).
[Crossref]

Díez, A.

Fu, H.

H. Fu, D. Chen, H. Ou, and S. He, “Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter,” Microwave Opt. Technol. Lett. 49, 2382–2386 (2007).
[Crossref]

Gasulla, I.

Han, Q.

He, S.

H. Fu, D. Chen, H. Ou, and S. He, “Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter,” Microwave Opt. Technol. Lett. 49, 2382–2386 (2007).
[Crossref]

Heyd, E. C.

E. C. Heyd and R. A. Minasian, “A solution to the synthesis problem of recirculating optical delay line filter,” IEEE Photon. Technol. Lett. 6, 833–835 (1994).
[Crossref]

Huang, J.

Iezekiel, S.

T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
[Crossref]

Johns, S.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[Crossref]

Keefer, C.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[Crossref]

Kersey, A.

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197 (2004).
[Crossref]

Lan, X.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[Crossref]

Lee, K. H.

K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, “A novel tunable fiber-optic microwave filter using multimode DCF,” IEEE Photon. Technol. Lett. 15, 969–971 (2003).
[Crossref]

Li, M.

H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38, 4857–4860 (2013).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 60, 1287–1296 (2012).
[Crossref]

Li, W.

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[Crossref]

H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38, 4857–4860 (2013).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 60, 1287–1296 (2012).
[Crossref]

Lloret, J.

Marti, J.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonics microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Martin, J.

Miles, R. E.

T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
[Crossref]

Minasian, R. A.

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
[Crossref]

E. C. Heyd and R. A. Minasian, “A solution to the synthesis problem of recirculating optical delay line filter,” IEEE Photon. Technol. Lett. 6, 833–835 (1994).
[Crossref]

Mora, J.

Norton, D.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[Crossref]

Oh, K.

K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, “A novel tunable fiber-optic microwave filter using multimode DCF,” IEEE Photon. Technol. Lett. 15, 969–971 (2003).
[Crossref]

Ortega, B.

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24, 2500 (2006).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Experimental demonstration of parallel fiber-optic-based RF filtering using WDM techniques,” IEEE Photon. Technol. Lett. 12, 77–78 (2000).
[Crossref]

Ou, H.

H. Fu, D. Chen, H. Ou, and S. He, “Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter,” Microwave Opt. Technol. Lett. 49, 2382–2386 (2007).
[Crossref]

Pastor, D.

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24, 2500 (2006).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Experimental demonstration of parallel fiber-optic-based RF filtering using WDM techniques,” IEEE Photon. Technol. Lett. 12, 77–78 (2000).
[Crossref]

Polo, V.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonics microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31, 571–586 (2013).
[Crossref]

T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
[Crossref]

Sancho, J.

Soref, R.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[Crossref]

Vidal, B.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonics microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

Wang, H.

Wang, L. X.

H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38, 4857–4860 (2013).
[Crossref]

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[Crossref]

Wei, T.

Williams, J. A. R.

W. Zhang, J. A. R. Williams, and I. Bennion, “Polarization synthesized optical transversal filter employing high birefringence fiber gratings,” IEEE Photon. Technol. Lett. 13, 523–525 (2001).
[Crossref]

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).
[Crossref]

Xiao, H.

Xie, L.

Xue, X.

Yao, J.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 60, 1287–1296 (2012).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

Yi, X.

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[Crossref]

Yu, G.

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).
[Crossref]

Zhang, H.

Zhang, W.

W. Zhang, J. A. R. Williams, and I. Bennion, “Polarization synthesized optical transversal filter employing high birefringence fiber gratings,” IEEE Photon. Technol. Lett. 13, 523–525 (2001).
[Crossref]

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).
[Crossref]

Zheng, J. Y.

Zheng, X.

Zhou, B.

Zhu, N. H.

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[Crossref]

H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38, 4857–4860 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Culshaw, “Fiber optics in sensing and measurement,” IEEE J. Sel. Top. Quantum Electron. 6, 1014–1021 (2000).
[Crossref]

IEEE Photon. J. (1)

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (8)

E. C. Heyd and R. A. Minasian, “A solution to the synthesis problem of recirculating optical delay line filter,” IEEE Photon. Technol. Lett. 6, 833–835 (1994).
[Crossref]

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[Crossref]

W. Zhang, J. A. R. Williams, and I. Bennion, “Polarization synthesized optical transversal filter employing high birefringence fiber gratings,” IEEE Photon. Technol. Lett. 13, 523–525 (2001).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Experimental demonstration of parallel fiber-optic-based RF filtering using WDM techniques,” IEEE Photon. Technol. Lett. 12, 77–78 (2000).
[Crossref]

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonics microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003).
[Crossref]

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[Crossref]

K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, “A novel tunable fiber-optic microwave filter using multimode DCF,” IEEE Photon. Technol. Lett. 15, 969–971 (2003).
[Crossref]

IEEE Trans. Microwave Theor. Tech. (4)

T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J. Capmany, “Synthesis of all-optical microwave filters using Mach–Zehnder lattices,” IEEE Trans. Microwave Theor. Tech. 45, 1458–1462 (1997).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Tech. 54, 832–846 (2006).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microwave Theor. Tech. 60, 1287–1296 (2012).
[Crossref]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[Crossref]

J. Lightwave Technol. (4)

J. Phys. D (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197 (2004).
[Crossref]

Microwave Opt. Technol. Lett. (1)

H. Fu, D. Chen, H. Ou, and S. He, “Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter,” Microwave Opt. Technol. Lett. 49, 2382–2386 (2007).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57–79 (2003).
[Crossref]

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic showings of the proposed optical length measurement technique based on a single-bandpass MPF. SLED, superluminescent LED; TOF, tunable optical filter; Pol, polarizer; PC, polarization controller; PBS, polarization beam splitter; PBC, polarization beam combiner; PolM, polarization modulator; DCF, dispersion compensation fiber; PD, photodetector; VNA, vector network analyzer.
Fig. 2.
Fig. 2. Basic implementation principle of the proposed MPF-based approach for measuring optical length change.
Fig. 3.
Fig. 3. Measured optical spectrum of the lightwave output from a SLED cascaded with a TOF.
Fig. 4.
Fig. 4. Measured frequency response of the MPF along with the change of optical length. (a) Center frequency is tuned ranging from 2 to 14 GHz. (b) Center frequency is tuned around 10 GHz.
Fig. 5.
Fig. 5. Relationship between the center frequency of the MPF and the optical length change.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ExEy]=22×[cos(π/4)Eout1(tΔt)exp[jβcos(ωmt)]sin(π/4)Eout1(tΔt)exp[jβcos(ωmt)]+cos(3π/4)Eout1(t)exp[jβcos(ωmt)]+sin(π/4)Eout1(t)exp[jβcos(ωmt)]]=12×[Eout1(tΔt)exp[jβcos(ωmt)]Eout1(tΔt)exp[jβcos(ωmt)]Eout1(t)exp[jβcos(ωmt)]+Eout1(t)exp[jβcos(ωmt)]],
Eout2(t)=(1/2)cos(π/4){Eout1(tΔt)exp[jβcos(ωmt)]Eout1(t)exp[jβcos(ωmt)]+Eout1(tΔt)exp[jβcos(ωmt)]+Eout1(t)exp[jβcos(ωmt)]}(2/2)J0(β)Eout1(tΔt)j2J1(β)Eout1(t)cos(ωmt),
Eout2(Ω)J0(β)Eout1(Ω)exp(jΩΔt)jJ1(β)[Eout1(Ωωm)+Eout1(Ω+ωm)].
Φ(Ω)=Φ(Ω0)+τ(Ω0)·(ΩΩ0)+D·L(ΩΩ0)2/2+χ·L(ΩΩ0)3/3,
H(ω)Hb(ωΔt/DL)exp[j(Ω0ΔtDLω2/2)]+Hb(ω+Δt/DL)exp[j(Ω0Δt+DLω2/2)],
Hb(ω)=12π0+S(ω)exp[jωDL(ΩΩ0)]dΩ,
fc=Δt/(2πDL)=ΔL/(2πcDL).

Metrics