Abstract

Stimulated Brillouin scattering (SBS) in optical fibers has long been used in frequency-selective optical signal processing, including in the realization of microwave-photonic (MWP) filters. In this work, we report a significant enhancement in the selectivity of SBS-based MWP filters. Filters having a single passband of 250 MHz–1 GHz bandwidth are demonstrated, with selectivity of up to 44 dB. The selectivity of the filters is better than that of the corresponding previous arrangements by about 15 dB. The shape factor of the filters, defined as the ratio between their 20dB bandwidth and their 3dB bandwidth, is between 1.35 and 1.5. The central transmission frequency, bandwidth, and spectral shape of the passband are all independently adjusted. Performance enhancement is based on two advances, compared with previous demonstrations of tunable SBS-based MWP filters: (a) the polarization attributes of SBS in standard, weakly birefringent fibers are used to discriminate between in-band and out-of-band components and (b) a sharp and uniform power spectral density of the SBS pump waves is synthesized through external modulation of an optical carrier by broadband, frequency-swept waveforms. The signal-to-noise ratio of filtered radio-frequency waveforms and the linear dynamic range of the filters are estimated analytically and quantified experimentally. Lastly, a figure of merit for the performance of the filters is proposed and discussed. The filters are applicable to radio-over-fiber transmission systems.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.  Capmany, B.  Ortega, D.  Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [CrossRef]
  2. J.  Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  3. J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  4. S.  Pan, J.  Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28, 2445–2455 (2010).
    [CrossRef]
  5. H.  Al-Raweshidi, S.  Komaki, eds., Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).
  6. D. E.  Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
    [CrossRef]
  7. J.  Capmany, B.  Ortega, D.  Pastor, S.  Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
    [CrossRef]
  8. B.  Moslehi, J. W.  Goodman, M.  Tur, H. J.  Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
    [CrossRef]
  9. A.  Loayssa, J.  Capmany, M.  Sagues, J.  Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
    [CrossRef]
  10. Y.  Zhang, S.  Pan, “A complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
    [CrossRef]
  11. A.  Mokhtari, S.  Preussler, K.  Jamshidi, M.  Akbari, T.  Schneider, “Fully-tunable microwave photonic filter with complex coefficients using delay lines based on frequency-time conversions,” Opt. Express 20, 22728–22734 (2012).
    [CrossRef]
  12. A.  Mokhtari, K.  Jamshidi, S.  Preussler, A.  Zadok, T.  Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
    [CrossRef]
  13. S.  Xiao, A. M.  Weiner, “Coherent photonic processing of microwave signals using spatial light modulators: programmable amplitude filters,” J. Lightwave Technol. 24, 2523–2529 (2006).
    [CrossRef]
  14. T. X.  Huang, X.  Yi, R. A.  Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19, 6231–6242 (2011).
    [CrossRef]
  15. R. W.  Boyd, Nonlinear Optics (Academic, 2003).
  16. T.  Horiguchi, T.  Kurashima, M.  Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
    [CrossRef]
  17. X.  Bao, L.  Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [CrossRef]
  18. M.  Niklès, L.  Thévenaz, P. A.  Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [CrossRef]
  19. A.  Zadok, A.  Eyal, M.  Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50, E38–E49 (2011).
    [CrossRef]
  20. X. S.  Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
    [CrossRef]
  21. T.  Tanemura, Y.  Takushima, K.  Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552–1554 (2002).
    [CrossRef]
  22. A.  Zadok, A.  Eyal, M.  Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
    [CrossRef]
  23. M. O.  Van Deventer, A. J.  Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
    [CrossRef]
  24. A.  Zadok, E.  Zilka, A.  Eyal, L.  Thévenaz, M.  Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
    [CrossRef]
  25. A.  Wise, M.  Tur, A.  Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19, 21945–21955 (2011).
    [CrossRef]
  26. S.  Preussler, A.  Zadok, A.  Wiatrek, M.  Tur, T.  Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
    [CrossRef]
  27. Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).
  28. Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.
  29. M.  Sagues, A.  Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
    [CrossRef]
  30. B.  Vidal, “Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling,” Opt. Lett. 37, 5055–5057 (2012).
    [CrossRef]
  31. S.  Preussler, N.  Wenzel, R. P.  Braun, N.  Owschimikow, C.  Vogel, A.  Deninger, A.  Zadok, U.  Woggon, T.  Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21, 23950–23962 (2013).
    [CrossRef]
  32. W.  Li, L. X.  Wang, N. H.  Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
    [CrossRef]
  33. R. J.  Mailloux, Phased Array Antenna Handbook (Artech House, 2005).
  34. R. W.  Tkach, A. R.  Chraplyvy, R. M.  Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
    [CrossRef]
  35. M. F.  Ferreira, J. F.  Rocha, J. L.  Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
    [CrossRef]
  36. M. D.  Stenner, M. A.  Neifeld, Z.  Zhu, A. M. C.  Dawes, D. J.  Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
    [CrossRef]
  37. K.-Y.  Song, M.  González Herráez, L.  Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
    [CrossRef]
  38. T.  Sakamoto, T.  Yamamoto, K.  Shiraki, T.  Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
    [CrossRef]
  39. X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
    [CrossRef]
  40. A.  Zadok, A.  Eyal, M.  Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
    [CrossRef]
  41. A. E.  Willner, B.  Zhang, L.  Zhang, L. S.  Yan, I.  Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
    [CrossRef]
  42. Y.  Zhu, M.  Lee, M. A.  Neifeld, D. J.  Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697 (2011).
    [CrossRef]
  43. A.  Byrnes, R.  Pant, E.  Li, D.-Y.  Choi, C. G.  Poulton, S.  Fan, S.  Madden, B.  Luther-Davies, B. J.  Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20, 18836–18845 (2012).
    [CrossRef]
  44. L.  Yaron, M.  Tur, “RF nonlinearities in an analog optical link and their effect on radars carrying linear and nonlinear frequency modulated pulses,” J. Lightwave Technol. 30, 3475–3483 (2012).
    [CrossRef]
  45. J. H.  Schaffner, W. B.  Bridges, “Intermodulation distortion in high-dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11, 3–6 (1993).
    [CrossRef]
  46. M.  Ran, B. I.  Lembrikov, Y.  Ben-Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2, 36–48 (2010).
    [CrossRef]

2013 (6)

Y.  Zhang, S.  Pan, “A complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
[CrossRef]

W.  Li, L. X.  Wang, N. H.  Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[CrossRef]

X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

A.  Mokhtari, K.  Jamshidi, S.  Preussler, A.  Zadok, T.  Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
[CrossRef]

S.  Preussler, N.  Wenzel, R. P.  Braun, N.  Owschimikow, C.  Vogel, A.  Deninger, A.  Zadok, U.  Woggon, T.  Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21, 23950–23962 (2013).
[CrossRef]

2012 (5)

2011 (5)

2010 (3)

2009 (1)

2008 (3)

2007 (2)

2006 (4)

2005 (3)

2002 (1)

1998 (1)

X. S.  Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

1996 (1)

1994 (2)

M. F.  Ferreira, J. F.  Rocha, J. L.  Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[CrossRef]

M. O.  Van Deventer, A. J.  Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

1993 (1)

J. H.  Schaffner, W. B.  Bridges, “Intermodulation distortion in high-dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11, 3–6 (1993).
[CrossRef]

1990 (1)

T.  Horiguchi, T.  Kurashima, M.  Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

1989 (1)

R. W.  Tkach, A. R.  Chraplyvy, R. M.  Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

1984 (1)

B.  Moslehi, J. W.  Goodman, M.  Tur, H. J.  Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

1977 (1)

D. E.  Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
[CrossRef]

Akbari, M.

Bao, X.

X.  Bao, L.  Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Ben-Ezra, Y.

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

M.  Ran, B. I.  Lembrikov, Y.  Ben-Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2, 36–48 (2010).
[CrossRef]

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

Boot, A. J.

M. O.  Van Deventer, A. J.  Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Boyd, R. W.

R. W.  Boyd, Nonlinear Optics (Academic, 2003).

Braun, R. P.

Bridges, W. B.

J. H.  Schaffner, W. B.  Bridges, “Intermodulation distortion in high-dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11, 3–6 (1993).
[CrossRef]

Byrnes, A.

Capmany, J.

J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

J.  Capmany, B.  Ortega, D.  Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

A.  Loayssa, J.  Capmany, M.  Sagues, J.  Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

J.  Capmany, B.  Ortega, D.  Pastor, S.  Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

Chen, L.

X.  Bao, L.  Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Choi, D.-Y.

Chraplyvy, A. R.

R. W.  Tkach, A. R.  Chraplyvy, R. M.  Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

Dawes, A. M. C.

Deninger, A.

Derosier, R. M.

R. W.  Tkach, A. R.  Chraplyvy, R. M.  Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

Dudgeon, D. E.

D. E.  Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
[CrossRef]

Eggleton, B. J.

Eyal, A.

Fan, S.

Fazal, I.

A. E.  Willner, B.  Zhang, L.  Zhang, L. S.  Yan, I.  Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Ferreira, M. F.

M. F.  Ferreira, J. F.  Rocha, J. L.  Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[CrossRef]

Gauthier, D. J.

González Herráez, M.

Goodman, J. W.

B.  Moslehi, J. W.  Goodman, M.  Tur, H. J.  Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Horiguchi, T.

T.  Horiguchi, T.  Kurashima, M.  Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Huang, T. X.

Jamshidi, K.

Kikuchi, K.

Kurashima, T.

T.  Sakamoto, T.  Yamamoto, K.  Shiraki, T.  Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
[CrossRef]

T.  Horiguchi, T.  Kurashima, M.  Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Lee, M.

Lembrikov, B. I.

M.  Ran, B. I.  Lembrikov, Y.  Ben-Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2, 36–48 (2010).
[CrossRef]

Li, E.

Li, W.

X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

W.  Li, L. X.  Wang, N. H.  Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[CrossRef]

Loayssa, A.

M.  Sagues, A.  Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef]

A.  Loayssa, J.  Capmany, M.  Sagues, J.  Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mailloux, R. J.

R. J.  Mailloux, Phased Array Antenna Handbook (Artech House, 2005).

Minasian, R. A.

Mokhtari, A.

Mora, J.

A.  Loayssa, J.  Capmany, M.  Sagues, J.  Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Moslehi, B.

B.  Moslehi, J. W.  Goodman, M.  Tur, H. J.  Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Neifeld, M. A.

Niklès, M.

Novak, D.

J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Ortega, B.

Owschimikow, N.

Pan, S.

Y.  Zhang, S.  Pan, “A complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
[CrossRef]

S.  Pan, J.  Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28, 2445–2455 (2010).
[CrossRef]

Pan, W.

X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Pant, R.

Pastor, D.

Pinto, J. L.

M. F.  Ferreira, J. F.  Rocha, J. L.  Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[CrossRef]

Poulton, C. G.

Preussler, S.

Ran, M.

M.  Ran, B. I.  Lembrikov, Y.  Ben-Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2, 36–48 (2010).
[CrossRef]

Robert, P. A.

Rocha, J. F.

M. F.  Ferreira, J. F.  Rocha, J. L.  Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[CrossRef]

Sagues, M.

M.  Sagues, A.  Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef]

A.  Loayssa, J.  Capmany, M.  Sagues, J.  Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Sakamoto, T.

Sales, S.

Schaffner, J. H.

J. H.  Schaffner, W. B.  Bridges, “Intermodulation distortion in high-dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11, 3–6 (1993).
[CrossRef]

Schneider, T.

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

A.  Mokhtari, K.  Jamshidi, S.  Preussler, A.  Zadok, T.  Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
[CrossRef]

S.  Preussler, N.  Wenzel, R. P.  Braun, N.  Owschimikow, C.  Vogel, A.  Deninger, A.  Zadok, U.  Woggon, T.  Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21, 23950–23962 (2013).
[CrossRef]

A.  Mokhtari, S.  Preussler, K.  Jamshidi, M.  Akbari, T.  Schneider, “Fully-tunable microwave photonic filter with complex coefficients using delay lines based on frequency-time conversions,” Opt. Express 20, 22728–22734 (2012).
[CrossRef]

S.  Preussler, A.  Zadok, A.  Wiatrek, M.  Tur, T.  Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
[CrossRef]

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

Shaw, H. J.

B.  Moslehi, J. W.  Goodman, M.  Tur, H. J.  Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Shiraki, K.

Song, K.-Y.

Stenner, M. D.

Stern, Y.

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

Takushima, Y.

Tanemura, T.

Tateda, M.

T.  Horiguchi, T.  Kurashima, M.  Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

Thévenaz, L.

Tkach, R. W.

R. W.  Tkach, A. R.  Chraplyvy, R. M.  Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

Tur, M.

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

S.  Preussler, A.  Zadok, A.  Wiatrek, M.  Tur, T.  Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
[CrossRef]

L.  Yaron, M.  Tur, “RF nonlinearities in an analog optical link and their effect on radars carrying linear and nonlinear frequency modulated pulses,” J. Lightwave Technol. 30, 3475–3483 (2012).
[CrossRef]

A.  Wise, M.  Tur, A.  Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19, 21945–21955 (2011).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50, E38–E49 (2011).
[CrossRef]

A.  Zadok, E.  Zilka, A.  Eyal, L.  Thévenaz, M.  Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef]

B.  Moslehi, J. W.  Goodman, M.  Tur, H. J.  Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

Van Deventer, M. O.

M. O.  Van Deventer, A. J.  Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Vidal, B.

Vogel, C.

Wang, L. X.

W.  Li, L. X.  Wang, N. H.  Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[CrossRef]

Weiner, A. M.

Wenzel, N.

Wiatrek, A.

Willner, A. E.

A. E.  Willner, B.  Zhang, L.  Zhang, L. S.  Yan, I.  Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Wise, A.

Woggon, U.

Xiao, S.

Yamamoto, T.

Yan, L.

X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Yan, L. S.

A. E.  Willner, B.  Zhang, L.  Zhang, L. S.  Yan, I.  Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Yao, J.

X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

S.  Pan, J.  Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28, 2445–2455 (2010).
[CrossRef]

J.  Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

Yao, X. S.

X. S.  Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

Yaron, L.

Yi, X.

Zadok, A.

A.  Mokhtari, K.  Jamshidi, S.  Preussler, A.  Zadok, T.  Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
[CrossRef]

S.  Preussler, N.  Wenzel, R. P.  Braun, N.  Owschimikow, C.  Vogel, A.  Deninger, A.  Zadok, U.  Woggon, T.  Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21, 23950–23962 (2013).
[CrossRef]

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

S.  Preussler, A.  Zadok, A.  Wiatrek, M.  Tur, T.  Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50, E38–E49 (2011).
[CrossRef]

A.  Wise, M.  Tur, A.  Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19, 21945–21955 (2011).
[CrossRef]

A.  Zadok, E.  Zilka, A.  Eyal, L.  Thévenaz, M.  Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef]

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

Zhang, B.

A. E.  Willner, B.  Zhang, L.  Zhang, L. S.  Yan, I.  Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Zhang, L.

A. E.  Willner, B.  Zhang, L.  Zhang, L. S.  Yan, I.  Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Zhang, R.

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

Zhang, Y.

Y.  Zhang, S.  Pan, “A complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
[CrossRef]

Zhong, K.

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals,” Appl. Opt. 52, 6179–6184 (2013).

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

Zhu, N. H.

W.  Li, L. X.  Wang, N. H.  Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[CrossRef]

Zhu, Y.

Zhu, Z.

Zilka, E.

Zou, X.

X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

A. E.  Willner, B.  Zhang, L.  Zhang, L. S.  Yan, I.  Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

IEEE Photon. J. (2)

W.  Li, L. X.  Wang, N. H.  Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photon. J. 5, 5501411 (2013).
[CrossRef]

M.  Ran, B. I.  Lembrikov, Y.  Ben-Ezra, “Ultra-wideband radio-over-optical fiber concepts, technologies and applications,” IEEE Photon. J. 2, 36–48 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

R. W.  Tkach, A. R.  Chraplyvy, R. M.  Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

A.  Loayssa, J.  Capmany, M.  Sagues, J.  Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Y.  Zhang, S.  Pan, “A complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photon. Technol. Lett. 25, 187–189 (2013).
[CrossRef]

T.  Horiguchi, T.  Kurashima, M.  Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[CrossRef]

X. S.  Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

X.  Zou, W.  Li, W.  Pan, L.  Yan, J.  Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theor. Tech. 61, 3470–3478 (2013).
[CrossRef]

J. Lightwave Technol. (9)

J. H.  Schaffner, W. B.  Bridges, “Intermodulation distortion in high-dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11, 3–6 (1993).
[CrossRef]

M. O.  Van Deventer, A. J.  Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

J.  Capmany, B.  Ortega, D.  Pastor, S.  Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

J.  Capmany, B.  Ortega, D.  Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

J.  Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

S.  Pan, J.  Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28, 2445–2455 (2010).
[CrossRef]

L.  Yaron, M.  Tur, “RF nonlinearities in an analog optical link and their effect on radars carrying linear and nonlinear frequency modulated pulses,” J. Lightwave Technol. 30, 3475–3483 (2012).
[CrossRef]

S.  Xiao, A. M.  Weiner, “Coherent photonic processing of microwave signals using spatial light modulators: programmable amplitude filters,” J. Lightwave Technol. 24, 2523–2529 (2006).
[CrossRef]

Nat. Photonics (1)

J.  Capmany, D.  Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Opt. Express (14)

M.  Sagues, A.  Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef]

Y.  Zhu, M.  Lee, M. A.  Neifeld, D. J.  Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697 (2011).
[CrossRef]

T. X.  Huang, X.  Yi, R. A.  Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19, 6231–6242 (2011).
[CrossRef]

A.  Wise, M.  Tur, A.  Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19, 21945–21955 (2011).
[CrossRef]

S.  Preussler, A.  Zadok, A.  Wiatrek, M.  Tur, T.  Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
[CrossRef]

A.  Byrnes, R.  Pant, E.  Li, D.-Y.  Choi, C. G.  Poulton, S.  Fan, S.  Madden, B.  Luther-Davies, B. J.  Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20, 18836–18845 (2012).
[CrossRef]

A.  Mokhtari, S.  Preussler, K.  Jamshidi, M.  Akbari, T.  Schneider, “Fully-tunable microwave photonic filter with complex coefficients using delay lines based on frequency-time conversions,” Opt. Express 20, 22728–22734 (2012).
[CrossRef]

T.  Sakamoto, T.  Yamamoto, K.  Shiraki, T.  Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
[CrossRef]

A.  Zadok, E.  Zilka, A.  Eyal, L.  Thévenaz, M.  Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

K.-Y.  Song, M.  González Herráez, L.  Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
[CrossRef]

M. D.  Stenner, M. A.  Neifeld, Z.  Zhu, A. M. C.  Dawes, D. J.  Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef]

A.  Zadok, A.  Eyal, M.  Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef]

A.  Mokhtari, K.  Jamshidi, S.  Preussler, A.  Zadok, T.  Schneider, “Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines,” Opt. Express 21, 21702–21707 (2013).
[CrossRef]

S.  Preussler, N.  Wenzel, R. P.  Braun, N.  Owschimikow, C.  Vogel, A.  Deninger, A.  Zadok, U.  Woggon, T.  Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21, 23950–23962 (2013).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

M. F.  Ferreira, J. F.  Rocha, J. L.  Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35–44 (1994).
[CrossRef]

Proc. IEEE (2)

B.  Moslehi, J. W.  Goodman, M.  Tur, H. J.  Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

D. E.  Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977).
[CrossRef]

Sensors (1)

X.  Bao, L.  Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Other (4)

R. W.  Boyd, Nonlinear Optics (Academic, 2003).

H.  Al-Raweshidi, S.  Komaki, eds., Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).

Y.  Stern, K.  Zhong, T.  Schneider, Y.  Ben-Ezra, R.  Zhang, M.  Tur, A.  Zadok, “Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (2013), pp. 146–149.

R. J.  Mailloux, Phased Array Antenna Handbook (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic illustration of the working principle of polarization-enhanced, SBS-based MWP BPFs. fsig, variable radio frequency of the signal input modulation. MZM, Mach–Zehnder modulator; TLS, tunable laser source; PD, photodetector. Insets illustrate the following: A, PSD of the pump wave and the SBS gain window; B, PSD of the signal wave before the SBS amplification; C, PSD of the signal wave after the SBS amplification; D, PSD of the signal combined with the optical carrier prior to detection.

Fig. 2.
Fig. 2.

Experimental setup for the demonstration of SBS-based, polarization-enhanced MWP BPFs. FBG, fiber Bragg grating.

Fig. 3.
Fig. 3.

Experimentally obtained frequency response of a 500-MHz-wide, polarization-enhanced, SBS-based MWP BPF (black solid) and the corresponding simulated response (red-dashed). The latter is based on measurements of the broadened pump PSD.

Fig. 4.
Fig. 4.

Normalized frequency responses of 500-MHz-wide MWP BPFs, with central frequencies of 1.65 GHz (green), 1.9 GHz (red), and 2.15 GHz (blue).

Fig. 5.
Fig. 5.

Normalized frequency responses of MWP BPFs, obtained using pump bandwidths of 250 MHz (blue), 500 MHz (red), and 1 GHz (green).

Fig. 6.
Fig. 6.

Examples of normalized frequency responses of MWP filters with various magnitude transfer functions.

Fig. 7.
Fig. 7.

Selectivity of a 500-MHz-wide MWP BPF as a function of the SBS pump power. The input optical power of the signal sideband was 32dBm.

Fig. 8.
Fig. 8.

SNR of a RF tone at the output of a 500-MHz-wide, MWP BPF as a function of the SBS pump power. The inset shows an example of the RF PSD at the filter output, obtained for an input CW at 1.9 GHz and pump power 20.8 dBm. A pedestal of RF noise due to SBS-ASE, spanning the entire filter passband, restricts the output SNR to 14.8 dB in this particular measurement.

Fig. 9.
Fig. 9.

LDR measurement: output electrical power of an amplified CW RF signal, as a function of the optical power of the input signal sideband.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Gmax(νsig)=exp[13g(νsig)Leff],Gmin(νsig)=exp[16g(νsig)Leff].
|Gpol(νsig)|2=14|Gmax(νsig)Gmin(νsig)|2Gmax114|Gmax(νsig)|2.
PASE=hνcar·Fn·|Gmax|2·Δf,
SNR=Psig·|Gpol|2·Pcar12hvcar·Fn·|Gmax|2·Δf·PcarGmax1Psig2hvcar·Fn·Δf.
SNR×SLPsig2hνcar·Fn·B×|Gmax|216·x,
SNR×SL12hν·Fn·B×116·x×DPpumpΓBB=DΓB32hν·Fn·xPpumpB2CPpumpB2.

Metrics