Abstract

An integrated on-chip optical device consisting of two distributed feedback (DFB) lasers and one multimode semiconductor ring laser (SRL) has been numerically investigated. In this optical circuit, the two DFB lasers are injected into the SRL, and with the presence of the four-wave mixing effect and optical feedback, the three semiconductor lasers achieve mutual-locking state. The beating between the output optical spectral lines can generate readily tunable radio frequency signals with high spectral purity.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection

Peng Wang, Jintian Xiong, Tingting Zhang, Dalei Chen, Peng Xiang, Jilin Zheng, Yunshan Zhang, Ruoming Li, Long Huang, Tao Pu, and Xiangfei Chen
Opt. Express 23(16) 20450-20458 (2015)

Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz

Katarzyna Balakier, Martyn J. Fice, Frederic van Dijk, Gael Kervella, Guillermo Carpintero, Alwyn J. Seeds, and Cyril C. Renaud
Opt. Express 22(24) 29404-29412 (2014)

Laser frequency fixation by multimode optical injection locking

Arfan Sindhu Tistomo and Sangyoun Gee
Opt. Express 19(2) 1081-1090 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J.  Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  2. G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
    [Crossref]
  3. A. J.  Seeds, K. J.  Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [Crossref]
  4. P.  Shen, N. J.  Gomes, P. A.  Davies, P. G.  Huggard, B. N.  Ellison, “Analysis and demonstration of a fast tunable fiber-ring-based optical frequency comb generator,” J. Lightwave Technol. 25, 3257–3264 (2007).
    [Crossref]
  5. Y.  Juan, F.  Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
    [Crossref]
  6. X. S.  Yao, L.  Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
    [Crossref]
  7. M.  Soldo, N.  Gibbons, G.  Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JThE32.
  8. U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
    [Crossref]
  9. L. A.  Johansson, A. J.  Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12, 690–692 (2000).
    [Crossref]
  10. M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
    [Crossref]
  11. H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
    [Crossref]
  12. C.  Born, M.  Sorel, S.  Yu, “Linear and nonlinear mode interactions in a semiconductor ring laser,” IEEE J. Quantum Electron. 41, 261–271 (2005).
    [Crossref]
  13. M.  Ahmed, M.  Yamada, “Field fluctuations and spectral line shape in semiconductor lasers subjected to optical feedback,” J. Appl. Phys. 95, 7573–7583 (2004).
    [Crossref]
  14. X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
    [Crossref]
  15. R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
    [Crossref]
  16. Y. D.  Chong, A. D.  Stone, “General linewidth formula for steady-state multimode lasing in arbitrary cavities,” Phys. Rev. Lett. 109, 063902 (2012).
    [Crossref]
  17. R.  Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
    [Crossref]
  18. O.  Lidoyne, P.  Gallion, C.  Chabran, G.  Debarge, “Locking range, phase noise and power spectrum of an injection-locked semiconductor laser,” IEEE Proc. J. Optoelectron. 137, 147–154 (1990).
    [Crossref]
  19. G.  Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
    [Crossref]
  20. A.  Takada, W.  Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
    [Crossref]
  21. C.  Born, “Nonlinear mode interactions in semiconductor ring lasers,” Ph.D. thesis (University of Bristol, 2006).
  22. C.  Born, G.  Yuan, Z.  Wang, S.  Yu, “Nonlinear gain in semiconductor ring lasers,” IEEE J. Quantum Electron. 44, 1055–1064 (2008).
    [Crossref]
  23. M.  Ahmed, M.  Yamada, M.  Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37, 1600–1610 (2001).
    [Crossref]
  24. P.  Laurent, A.  Clairon, C.  Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).
    [Crossref]
  25. M.  Sorel, P. J. R.  Laybourn, A.  Scire, S.  Balle, G.  Giuliani, R.  Miglierina, S.  Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).
    [Crossref]

2013 (2)

G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

2012 (2)

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

Y. D.  Chong, A. D.  Stone, “General linewidth formula for steady-state multimode lasing in arbitrary cavities,” Phys. Rev. Lett. 109, 063902 (2012).
[Crossref]

2011 (1)

Y.  Juan, F.  Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

2009 (1)

2008 (1)

C.  Born, G.  Yuan, Z.  Wang, S.  Yu, “Nonlinear gain in semiconductor ring lasers,” IEEE J. Quantum Electron. 44, 1055–1064 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

C.  Born, M.  Sorel, S.  Yu, “Linear and nonlinear mode interactions in a semiconductor ring laser,” IEEE J. Quantum Electron. 41, 261–271 (2005).
[Crossref]

2004 (1)

M.  Ahmed, M.  Yamada, “Field fluctuations and spectral line shape in semiconductor lasers subjected to optical feedback,” J. Appl. Phys. 95, 7573–7583 (2004).
[Crossref]

2003 (1)

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

2002 (1)

2001 (1)

M.  Ahmed, M.  Yamada, M.  Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37, 1600–1610 (2001).
[Crossref]

2000 (1)

L. A.  Johansson, A. J.  Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12, 690–692 (2000).
[Crossref]

1997 (1)

A.  Takada, W.  Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

1996 (1)

X. S.  Yao, L.  Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

1992 (1)

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

1990 (2)

R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
[Crossref]

O.  Lidoyne, P.  Gallion, C.  Chabran, G.  Debarge, “Locking range, phase noise and power spectrum of an injection-locked semiconductor laser,” IEEE Proc. J. Optoelectron. 137, 147–154 (1990).
[Crossref]

1989 (1)

P.  Laurent, A.  Clairon, C.  Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).
[Crossref]

1984 (1)

G.  Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
[Crossref]

1982 (1)

R.  Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[Crossref]

Agrawal, G.

G.  Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
[Crossref]

Ahmed, M.

M.  Ahmed, M.  Yamada, “Field fluctuations and spectral line shape in semiconductor lasers subjected to optical feedback,” J. Appl. Phys. 95, 7573–7583 (2004).
[Crossref]

M.  Ahmed, M.  Yamada, M.  Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37, 1600–1610 (2001).
[Crossref]

Balle, S.

Born, C.

C.  Born, G.  Yuan, Z.  Wang, S.  Yu, “Nonlinear gain in semiconductor ring lasers,” IEEE J. Quantum Electron. 44, 1055–1064 (2008).
[Crossref]

C.  Born, M.  Sorel, S.  Yu, “Linear and nonlinear mode interactions in a semiconductor ring laser,” IEEE J. Quantum Electron. 41, 261–271 (2005).
[Crossref]

C.  Born, “Nonlinear mode interactions in semiconductor ring lasers,” Ph.D. thesis (University of Bristol, 2006).

Breant, C.

P.  Laurent, A.  Clairon, C.  Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).
[Crossref]

Broberg, B.

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Bruun, M.

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Cai, X.

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

Chabran, C.

O.  Lidoyne, P.  Gallion, C.  Chabran, G.  Debarge, “Locking range, phase noise and power spectrum of an injection-locked semiconductor laser,” IEEE Proc. J. Optoelectron. 137, 147–154 (1990).
[Crossref]

Chong, Y. D.

Y. D.  Chong, A. D.  Stone, “General linewidth formula for steady-state multimode lasing in arbitrary cavities,” Phys. Rev. Lett. 109, 063902 (2012).
[Crossref]

Christensen, E. L.

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Clairon, A.

P.  Laurent, A.  Clairon, C.  Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).
[Crossref]

Davies, P. A.

Debarge, G.

O.  Lidoyne, P.  Gallion, C.  Chabran, G.  Debarge, “Locking range, phase noise and power spectrum of an injection-locked semiconductor laser,” IEEE Proc. J. Optoelectron. 137, 147–154 (1990).
[Crossref]

Donati, S.

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

M.  Sorel, P. J. R.  Laybourn, A.  Scire, S.  Balle, G.  Giuliani, R.  Miglierina, S.  Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).
[Crossref]

Eliel, E. R.

R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
[Crossref]

Ellison, B. N.

Gallion, P.

O.  Lidoyne, P.  Gallion, C.  Chabran, G.  Debarge, “Locking range, phase noise and power spectrum of an injection-locked semiconductor laser,” IEEE Proc. J. Optoelectron. 137, 147–154 (1990).
[Crossref]

Gibbons, N.

M.  Soldo, N.  Gibbons, G.  Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JThE32.

Giuliani, G.

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

M.  Sorel, P. J. R.  Laybourn, A.  Scire, S.  Balle, G.  Giuliani, R.  Miglierina, S.  Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).
[Crossref]

M.  Soldo, N.  Gibbons, G.  Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JThE32.

Gliese, U.

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Gomes, N. J.

Ho, Y.-L. D.

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

Huggard, P. G.

Imajuku, W.

A.  Takada, W.  Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

Johansson, L. A.

L. A.  Johansson, A. J.  Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12, 690–692 (2000).
[Crossref]

Juan, Y.

Y.  Juan, F.  Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

Kang, Z.

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

Lang, R.

R.  Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[Crossref]

Laurent, P.

P.  Laurent, A.  Clairon, C.  Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).
[Crossref]

Laybourn, P. J. R.

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

M.  Sorel, P. J. R.  Laybourn, A.  Scire, S.  Balle, G.  Giuliani, R.  Miglierina, S.  Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).
[Crossref]

Li, H.

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

Lidoyne, O.

O.  Lidoyne, P.  Gallion, C.  Chabran, G.  Debarge, “Locking range, phase noise and power spectrum of an injection-locked semiconductor laser,” IEEE Proc. J. Optoelectron. 137, 147–154 (1990).
[Crossref]

Lin, F.

Y.  Juan, F.  Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

Lindgren, S.

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Lu, D.

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

Maleki, L.

X. S.  Yao, L.  Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

Mezosi, G.

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

Miglierina, R.

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

M.  Sorel, P. J. R.  Laybourn, A.  Scire, S.  Balle, G.  Giuliani, R.  Miglierina, S.  Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).
[Crossref]

Murakowski, J. A.

G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Neelen, R. C.

R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
[Crossref]

Nielsen, T. N.

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Prather, D. W.

G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Saito, M.

M.  Ahmed, M.  Yamada, M.  Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37, 1600–1610 (2001).
[Crossref]

Schneider, G. J.

G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Schuetz, C. A.

G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Scire, A.

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

M.  Sorel, P. J. R.  Laybourn, A.  Scire, S.  Balle, G.  Giuliani, R.  Miglierina, S.  Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).
[Crossref]

Seeds, A. J.

A. J.  Seeds, K. J.  Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[Crossref]

L. A.  Johansson, A. J.  Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12, 690–692 (2000).
[Crossref]

Shen, P.

Shi, S.

G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Soldo, M.

M.  Soldo, N.  Gibbons, G.  Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JThE32.

Sorel, M.

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

C.  Born, M.  Sorel, S.  Yu, “Linear and nonlinear mode interactions in a semiconductor ring laser,” IEEE J. Quantum Electron. 41, 261–271 (2005).
[Crossref]

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

M.  Sorel, P. J. R.  Laybourn, A.  Scire, S.  Balle, G.  Giuliani, R.  Miglierina, S.  Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).
[Crossref]

Spreeuw, R. J. C.

R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
[Crossref]

Stone, A. D.

Y. D.  Chong, A. D.  Stone, “General linewidth formula for steady-state multimode lasing in arbitrary cavities,” Phys. Rev. Lett. 109, 063902 (2012).
[Crossref]

Stubkjaer, K. E.

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Takada, A.

A.  Takada, W.  Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

van Druten, N. J.

R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
[Crossref]

Wang, Z.

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

C.  Born, G.  Yuan, Z.  Wang, S.  Yu, “Nonlinear gain in semiconductor ring lasers,” IEEE J. Quantum Electron. 44, 1055–1064 (2008).
[Crossref]

Williams, K. J.

Woerdman, J. P.

R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
[Crossref]

Yamada, M.

M.  Ahmed, M.  Yamada, “Field fluctuations and spectral line shape in semiconductor lasers subjected to optical feedback,” J. Appl. Phys. 95, 7573–7583 (2004).
[Crossref]

M.  Ahmed, M.  Yamada, M.  Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37, 1600–1610 (2001).
[Crossref]

Yao, J.

Yao, X. S.

X. S.  Yao, L.  Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

Yu, S.

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

C.  Born, G.  Yuan, Z.  Wang, S.  Yu, “Nonlinear gain in semiconductor ring lasers,” IEEE J. Quantum Electron. 44, 1055–1064 (2008).
[Crossref]

C.  Born, M.  Sorel, S.  Yu, “Linear and nonlinear mode interactions in a semiconductor ring laser,” IEEE J. Quantum Electron. 41, 261–271 (2005).
[Crossref]

Yuan, G.

C.  Born, G.  Yuan, Z.  Wang, S.  Yu, “Nonlinear gain in semiconductor ring lasers,” IEEE J. Quantum Electron. 44, 1055–1064 (2008).
[Crossref]

Zhang, N.

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

IEEE J. Quantum Electron. (10)

X. S.  Yao, L.  Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

M.  Sorel, G.  Giuliani, A.  Scire, R.  Miglierina, S.  Donati, P. J. R.  Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39, 1187–1195 (2003).
[Crossref]

H.  Li, D.  Lu, Z.  Kang, X.  Cai, N.  Zhang, S.  Yu, “A numerical study of cavity enhanced inter-modal four wave mixing in injection-locked semiconductor ring lasers,” IEEE J. Quantum Electron. 49, 862–869 (2013).
[Crossref]

C.  Born, M.  Sorel, S.  Yu, “Linear and nonlinear mode interactions in a semiconductor ring laser,” IEEE J. Quantum Electron. 41, 261–271 (2005).
[Crossref]

X.  Cai, Y.-L. D.  Ho, G.  Mezosi, Z.  Wang, M.  Sorel, S.  Yu, “Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers,” IEEE J. Quantum Electron. 48, 406–418 (2012).
[Crossref]

R.  Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[Crossref]

C.  Born, G.  Yuan, Z.  Wang, S.  Yu, “Nonlinear gain in semiconductor ring lasers,” IEEE J. Quantum Electron. 44, 1055–1064 (2008).
[Crossref]

M.  Ahmed, M.  Yamada, M.  Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron. 37, 1600–1610 (2001).
[Crossref]

P.  Laurent, A.  Clairon, C.  Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).
[Crossref]

G.  Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
[Crossref]

IEEE Photon. J. (1)

Y.  Juan, F.  Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (3)

A.  Takada, W.  Imajuku, “Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking,” IEEE Photon. Technol. Lett. 9, 1328–1330 (1997).
[Crossref]

U.  Gliese, T. N.  Nielsen, M.  Bruun, E. L.  Christensen, K. E.  Stubkjaer, S.  Lindgren, B.  Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

L. A.  Johansson, A. J.  Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop,” IEEE Photon. Technol. Lett. 12, 690–692 (2000).
[Crossref]

IEEE Proc. J. Optoelectron. (1)

O.  Lidoyne, P.  Gallion, C.  Chabran, G.  Debarge, “Locking range, phase noise and power spectrum of an injection-locked semiconductor laser,” IEEE Proc. J. Optoelectron. 137, 147–154 (1990).
[Crossref]

J. Appl. Phys. (1)

M.  Ahmed, M.  Yamada, “Field fluctuations and spectral line shape in semiconductor lasers subjected to optical feedback,” J. Appl. Phys. 95, 7573–7583 (2004).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

G. J.  Schneider, J. A.  Murakowski, C. A.  Schuetz, S.  Shi, D. W.  Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7, 118–122 (2013).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

R. J. C.  Spreeuw, R. C.  Neelen, N. J.  van Druten, E. R.  Eliel, J. P.  Woerdman, “Mode coupling in a He-Ne ring laser with backscattering,” Phys. Rev. A 42, 4315–4324 (1990).
[Crossref]

Phys. Rev. Lett. (1)

Y. D.  Chong, A. D.  Stone, “General linewidth formula for steady-state multimode lasing in arbitrary cavities,” Phys. Rev. Lett. 109, 063902 (2012).
[Crossref]

Other (2)

M.  Soldo, N.  Gibbons, G.  Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JThE32.

C.  Born, “Nonlinear mode interactions in semiconductor ring lasers,” Ph.D. thesis (University of Bristol, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of RF signal generation circuit based on mutual locking among two DFB lasers and one SRL.
Fig. 2.
Fig. 2. Spectra of (a) dual DFB injection-locked SRL modes in the CCW and CW directions, and (b) generated RF signal by beating the two lasing modes in the CCW direction. Pdfb1,2=0.23dBm, Psrlfr=20.3dBm, and Δω=0.
Fig. 3.
Fig. 3. FN curves of DFB lasers, SRL, and the generated RF signals.
Fig. 4.
Fig. 4. Linewidth of the generated RF signal as a function of tuning frequency.
Fig. 5.
Fig. 5. Influence of backscattering coefficient and feedback phase change on the linewidth of the generated RF signal. (a) General evolution, with linewidth expressed in log, (b) results of two special k values. Pdfb1,2=0.23dBm, Psrl=20.3dBm, and Δω=0.
Fig. 6.
Fig. 6. Linewidth of the generated RF signal (in log) as a function of (a) power ratio (Pdfb/Psrl), where Pdfb=Pdfb1=Pdfb2 and Δω=0, and (b) power ratio (Pdfb2/Pdfb1), where Pdfb1=0.23dBm and Δω=0.
Fig. 7.
Fig. 7. Linewidth of the generated RF signal (in log) as a function of the injection frequency detuning of the two DFB lasers.

Tables (2)

Tables Icon

Table 1. Values of the DFB Parameters Used for Numerical Simulation

Tables Icon

Table 2. Values of the SRL Parameters Used for Numerical Simulation

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Edfbit=12[(1jαi)Gdfbi+Gfeedbacki]Edfbi+Fedfbi,i=1,2,
Ndfbit=ηdfbiIdfbieVdfbNdfbiτdfbiGdfbi|Edfbi|2+Fndfbi,i=1,2,
Esrlt=12[(1jαsrl)Gsrl]Esrl+Eilmn+kEsrl+Einj+Fesrl,
Nsrlt=ηsrlIsrleVsrlNsrlτsrlGsrl|Esrl|2+Fnsrl.
Einj=SikcpEdfbieiΔωt.
Gfeedback=cnLln|Efeedback|,
Efeedback=1KfeedbackejθloopEsrl(tΔτ)Esrl(t).
Eilmn=12χ3ElEm*EnSilmn,
Silmn={1kikl+kmkn=00kikl+kmkn0.
Fe=Vssτgr+Vθθτgri,
Fn=Vnnτgn.
υ˜=12θt,
FN=1T|(υ˜υ¯)ejωτdτ|2.
fFWHM=4πFNω0.

Metrics