Abstract

A photonic-assisted radio frequency (RF) down-converter integrating with the optoelectronic oscillator (OEO)-based high quality local oscillator (LO) has been proposed and experimentally demonstrated. The LO and the RF input signal are mixed at the same phase modulator and photo-detector (PD) of the OEO-loop without any additional modulator or PD. The working bandwidth of the proposed RF down-converter is nearly from 2.5 to 10 GHz. The performance of the proposed down-converter is presented and the spurious frequency dynamic range at frequency of 5.5 GHz with the LO at 6.138 GHz is measured to be 98.4dBHz2/3. The influences that the frequency range and power of the RF input signal bring to the system are discussed as well.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  3. T. Kuri, H. Toda, and K.-I. Kitayama, “Dense wavelength-division multiplexing millimeter-wave-band radio-on-fiber signal transmission with photonic downconversion,” J. Lightwave Technol. 21, 1510–1517 (2003).
    [CrossRef]
  4. C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett. 8, 154–156 (1996).
    [CrossRef]
  5. R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
    [CrossRef]
  6. D. Zhu, S. Pan, S. Cai, and D. Ben, “High-performance photonic microwave downconverter based on a frequency-doubling optoelectronic oscillator,” J. Lightwave Technol. 30, 3036–3042 (2012).
    [CrossRef]
  7. M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20, 234–236 (2008).
    [CrossRef]
  8. K.-Y. Tu, M. S. Rasras, D. M. Gill, S. S. Patel, Y.-K. Chen, A. E. White, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Silicon RF-photonic filter and down-converter,” J. Lightwave Technol. 28, 3019–3028 (2010).
    [CrossRef]
  9. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19, 883–895 (2011).
    [CrossRef]
  10. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
    [CrossRef]
  11. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
    [CrossRef]
  12. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
    [CrossRef]
  13. W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Proceedings of Optical Fiber Communication Conference, Technical Digest (1997), pp. 358–359.
  14. T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.
  15. T. Chen, X. Yi, L. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37, 4699 (2012).
    [CrossRef]
  16. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18, 27359–27370 (2010).
    [CrossRef]
  17. Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
    [CrossRef]
  18. T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
    [CrossRef]

2014 (1)

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

2013 (2)

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

2012 (2)

2011 (2)

2010 (2)

2009 (1)

2008 (1)

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20, 234–236 (2008).
[CrossRef]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

2003 (1)

1997 (1)

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

1996 (2)

C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett. 8, 154–156 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

Beals, M.

Beattie, J.

Ben, D.

Cai, S.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Carothers, D.

Chen, T.

Chen, Y.-K.

Chen, Z.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Cox, C.

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

Gao, Y.

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

Gill, D. M.

Gu, W.

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

Guo, P.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Haas, B. M.

Helkey, R.

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

Hoekman, M.

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20, 234–236 (2008).
[CrossRef]

Hu, W.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Jiang, T.

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

Kimerling, L. C.

Kitayama, K.-I.

Kuri, T.

Leinse, A.

Li, J.

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

Li, L.

Luo, C.

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

Lutes, G.

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Proceedings of Optical Fiber Communication Conference, Technical Digest (1997), pp. 358–359.

Maleki, L.

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Proceedings of Optical Fiber Communication Conference, Technical Digest (1997), pp. 358–359.

Marpaung, D.

Michel, J.

Minasian, R.

Murphy, T. E.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Orazi, R. J.

C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett. 8, 154–156 (1996).
[CrossRef]

Pagán, V. R.

Pan, S.

Pappert, S. A.

C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett. 8, 154–156 (1996).
[CrossRef]

Patel, S. S.

Peng, H.

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Pomerene, A.

Rasras, M. S.

Roeloffzen, C.

Shang, L.

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

Shieh, W.

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Proceedings of Optical Fiber Communication Conference, Technical Digest (1997), pp. 358–359.

Sun, C. K.

C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett. 8, 154–156 (1996).
[CrossRef]

Sun, T.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Toda, H.

Tu, K.-Y.

Twichell, J. C.

R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

Vahala, K. J.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20, 234–236 (2008).
[CrossRef]

Wen, A.

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

White, A. E.

Xiang, S.

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

Xie, Q.

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

Xie, X.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Yao, J.

Yao, S. X.

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Proceedings of Optical Fiber Communication Conference, Technical Digest (1997), pp. 358–359.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

Yi, X.

Yu, S.

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

Zhang, C.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Zhang, H.

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

Zhang, R.

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

Zhao, L.

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

Zhu, D.

Zhu, L.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Zhu, X.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38, 655–657 (2013).
[CrossRef]

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Jiang, S. Yu, C. Luo, J. Li, R. Zhang, Q. Xie, and W. Gu, “Digital linearization and full spectrum utilization for phase-modulation photonic downconversion,” IEEE Photon. Technol. Lett. 25, 2010–2013 (2013).
[CrossRef]

C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion using photonic link signal mixing,” IEEE Photon. Technol. Lett. 8, 154–156 (1996).
[CrossRef]

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20, 234–236 (2008).
[CrossRef]

J. Lightwave Technol. (5)

Nat. Photonics (2)

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Opt. Commun. (1)

Y. Gao, A. Wen, H. Zhang, S. Xiang, H. Zhang, L. Zhao, and L. Shang, “An efficient photonic mixer with frequency doubling based on a dual-parallel MZM,” Opt. Commun. 321, 11–15 (2014).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (2)

W. Shieh, S. X. Yao, G. Lutes, and L. Maleki, “Microwave signal mixing by using a fiber-based optoelectronic oscillator for wavelength division multiplexed systems,” in Proceedings of Optical Fiber Communication Conference, Technical Digest (1997), pp. 358–359.

T. Sun, C. Zhang, X. Xie, P. Guo, X. Zhu, H. Peng, L. Zhu, W. Hu, and Z. Chen, “microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator,” Asia Communications and Photonics Conference (2013), paper AF2F.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the simple RF photonic down-converter integrating with OEO-based LO.

Fig. 2.
Fig. 2.

(a) Electric spectrum of the OEO-based LO at a frequency of 6.138 GHz and (b) the picture of the phase noise.

Fig. 3.
Fig. 3.

Experimental results of the LO-integrated down-conversion APL at frequency of about 6.138 GHz: (a) electrical spectrum of down-converted IF signal and (b) the measured SFDR.

Fig. 4.
Fig. 4.

Operation condition of the LO vanishing point induced by the high input RF power at different Δf.

Metrics