Abstract

ErxY2xSiO5 and ErxYbyY2xySiO5 crystalline thin films were investigated to apply to the high-gain media for silicon photonics. In addition to the sol–gel method, the directed self-assembly approach, using layer-by-layer deposition techniques, was also introduced to improve the crystallinity. The relaxation processes in Er ions were discussed to clarify the contribution of the energy transfer and cooperative upconversion. After optimization of the Er content, a Si photonic crystal slot ErxY2xSiO5 waveguide amplifier was fabricated, and a 30dB/cm modal gain was demonstrated. This achievement demonstrates the potential for compact and high optical gain devices on Si chips.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  2. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26, 58–66 (2006).
    [CrossRef]
  3. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  4. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401–12408 (2006).
    [CrossRef]
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [CrossRef]
  6. P. H. Lim, J. Cai, Y. Ishikawa, and K. Wada, “Laterally coupled silicon-germanium modulator for passive waveguide systems,” Opt. Lett. 37, 1496–1498 (2012).
    [CrossRef]
  7. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
    [CrossRef]
  8. R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987).
    [CrossRef]
  9. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped travelling-wave fibre amplifier,” Opt. Lett. 12, 888–890 (1987).
    [CrossRef]
  10. H. Isshiki, A. Polman, and T. Kimura, “Fine structure in the Er-related emission spectrum from Er–Si–O matrices at room temperature under carrier mediated excitation,” J. Lumin. 102–103, 819–824 (2003).
    [CrossRef]
  11. H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004).
    [CrossRef]
  12. M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
    [CrossRef]
  13. K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
    [CrossRef]
  14. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18, 7724–7731 (2010).
    [CrossRef]
  15. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
    [CrossRef]
  16. H. Isshiki and T. Kimura, “Toward small size waveguide amplifiers based on erbium silicate for silicon photonics,” IEICE Trans. Electron. E91-C, 138–144 (2008).
    [CrossRef]
  17. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
    [CrossRef]
  18. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932 (1971).
    [CrossRef]
  19. N. Krasutsky and H. W. Moos, “Energy transfer between the low-lying energy levels of Pr3+ and Nd3+ in LaCl3,” Phys. Rev. B 8, 1010 (1973).
    [CrossRef]
  20. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
    [CrossRef]
  21. G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
    [CrossRef]
  22. T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013).
    [CrossRef]
  23. H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
    [CrossRef]
  24. H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.
  25. T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009).
    [CrossRef]
  26. T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.
  27. Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
    [CrossRef]
  28. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55 (1948).
    [CrossRef]
  29. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
    [CrossRef]
  30. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
    [CrossRef]
  31. M. Miritello, P. Cardile, R. L. Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19, 20761–20772 (2011).
    [CrossRef]
  32. H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013).
    [CrossRef]
  33. H. C. Berg, Random Walks in Biology (Princeton University, 1993), Chap. 1.
  34. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22, 772–774 (1997).
    [CrossRef]
  35. P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008 (2003).
    [CrossRef]
  36. C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, “Growth, processing, and optical properties of epitaxial Er2O3 on silicon,” Opt. Express 16, 19649–19666 (2008).
    [CrossRef]
  37. L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
    [CrossRef]
  38. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [CrossRef]
  39. T. Sato, T. Nakajima, T. Kimura, and H. Isshiki, “Observation of 30  dB/cm gain in Si photonic crystal slot ErxY2-xSiO5 waveguide,” in Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP 2011) (IEEE, 2011), p. 6053828.

2013 (2)

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013).
[CrossRef]

H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013).
[CrossRef]

2012 (1)

2011 (2)

M. Miritello, P. Cardile, R. L. Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19, 20761–20772 (2011).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

2010 (3)

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18, 7724–7731 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
[CrossRef]

2009 (5)

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
[CrossRef]

T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009).
[CrossRef]

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

2008 (4)

G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
[CrossRef]

C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, “Growth, processing, and optical properties of epitaxial Er2O3 on silicon,” Opt. Express 16, 19649–19666 (2008).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

H. Isshiki and T. Kimura, “Toward small size waveguide amplifiers based on erbium silicate for silicon photonics,” IEICE Trans. Electron. E91-C, 138–144 (2008).
[CrossRef]

2007 (2)

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

2006 (2)

2005 (1)

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

2004 (1)

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004).
[CrossRef]

2003 (2)

H. Isshiki, A. Polman, and T. Kimura, “Fine structure in the Er-related emission spectrum from Er–Si–O matrices at room temperature under carrier mediated excitation,” J. Lumin. 102–103, 819–824 (2003).
[CrossRef]

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008 (2003).
[CrossRef]

2000 (1)

1997 (1)

1996 (1)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

1987 (2)

E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped travelling-wave fibre amplifier,” Opt. Lett. 12, 888–890 (1987).
[CrossRef]

R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987).
[CrossRef]

1973 (1)

N. Krasutsky and H. W. Moos, “Energy transfer between the low-lying energy levels of Pr3+ and Nd3+ in LaCl3,” Phys. Rev. B 8, 1010 (1973).
[CrossRef]

1971 (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932 (1971).
[CrossRef]

1967 (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

1948 (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55 (1948).
[CrossRef]

Abe, Y.

H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013).
[CrossRef]

Alves Izilda, W. A. L.

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

Anagnosti, M.

H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013).
[CrossRef]

Atanackovic, P. B.

Bae, B.-S.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

Baldochi, S. L.

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

Becker, P. C.

Berg, H. C.

H. C. Berg, Random Walks in Biology (Princeton University, 1993), Chap. 1.

Bongiorno, C.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Bruce, A. J.

Cai, J.

Cannon, D. D.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Cardile, P.

Chang, J. S.

Chen, W.

G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
[CrossRef]

Clark, A.

Cockroft, N. J.

Danielson, D. T.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

de Dood, M. J. A.

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004).
[CrossRef]

Desurvire, E.

Felipe, A.

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55 (1948).
[CrossRef]

Franzò, G.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Fukuda, H.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Gomes, L.

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

Gosnell, T. R.

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26, 58–66 (2006).
[CrossRef]

Guo, R. M.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

Hehlen, M. P.

Huang, F.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

Hwang, B.-C.

Iacona, F.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Irrera, A.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Ishikawa, Y.

P. H. Lim, J. Cai, Y. Ishikawa, and K. Wada, “Laterally coupled silicon-germanium modulator for passive waveguide systems,” Opt. Lett. 37, 1496–1498 (2012).
[CrossRef]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Isshiki, H.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
[CrossRef]

H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
[CrossRef]

T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009).
[CrossRef]

H. Isshiki and T. Kimura, “Toward small size waveguide amplifiers based on erbium silicate for silicon photonics,” IEICE Trans. Electron. E91-C, 138–144 (2008).
[CrossRef]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004).
[CrossRef]

H. Isshiki, A. Polman, and T. Kimura, “Fine structure in the Er-related emission spectrum from Er–Si–O matrices at room temperature under carrier mediated excitation,” J. Lumin. 102–103, 819–824 (2003).
[CrossRef]

H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.

T. Sato, T. Nakajima, T. Kimura, and H. Isshiki, “Observation of 30  dB/cm gain in Si photonic crystal slot ErxY2-xSiO5 waveguide,” in Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP 2011) (IEEE, 2011), p. 6053828.

T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.

Itabashi, S.

Iwatani, K.

H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.

Jagosich, F. H.

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

Jamora, A.

Jauncie, I. M.

R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987).
[CrossRef]

Jiang, S.

Jiang, Y.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.

Johnson, T. J.

Jongthammanurak, S.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Kik, P. G.

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008 (2003).
[CrossRef]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Kimerling, L. C.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Kimura, T.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
[CrossRef]

H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
[CrossRef]

T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009).
[CrossRef]

H. Isshiki and T. Kimura, “Toward small size waveguide amplifiers based on erbium silicate for silicon photonics,” IEICE Trans. Electron. E91-C, 138–144 (2008).
[CrossRef]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004).
[CrossRef]

H. Isshiki, A. Polman, and T. Kimura, “Fine structure in the Er-related emission spectrum from Er–Si–O matrices at room temperature under carrier mediated excitation,” J. Lumin. 102–103, 819–824 (2003).
[CrossRef]

H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.

T. Sato, T. Nakajima, T. Kimura, and H. Isshiki, “Observation of 30  dB/cm gain in Si photonic crystal slot ErxY2-xSiO5 waveguide,” in Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP 2011) (IEEE, 2011), p. 6053828.

T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.

Krasutsky, N.

N. Krasutsky and H. W. Moos, “Energy transfer between the low-lying energy levels of Pr3+ and Nd3+ in LaCl3,” Phys. Rev. B 8, 1010 (1973).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Lee, H.

Lee, M.

Li, M.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

Librantz, H.

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

Lim, P. H.

Liu, C.

G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
[CrossRef]

Liu, J.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Luo, L.

G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
[CrossRef]

Luo, T.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987).
[CrossRef]

Michael, C. P.

Michel, J.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Miritello, M.

M. Miritello, P. Cardile, R. L. Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19, 20761–20772 (2011).
[CrossRef]

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Moos, H. W.

N. Krasutsky and H. W. Moos, “Energy transfer between the low-lying energy levels of Pr3+ and Nd3+ in LaCl3,” Phys. Rev. B 8, 1010 (1973).
[CrossRef]

Nakajima, T.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013).
[CrossRef]

T. Sato, T. Nakajima, T. Kimura, and H. Isshiki, “Observation of 30  dB/cm gain in Si photonic crystal slot ErxY2-xSiO5 waveguide,” in Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP 2011) (IEEE, 2011), p. 6053828.

H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.

T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.

Nykolak, G.

Oe, M.

H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
[CrossRef]

Omi, H.

H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013).
[CrossRef]

Painter, O.

Park, N.

Pavesi, L.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Peyghambarian, N.

Piro, A. M.

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Polman, A.

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004).
[CrossRef]

H. Isshiki, A. Polman, and T. Kimura, “Fine structure in the Er-related emission spectrum from Er–Si–O matrices at room temperature under carrier mediated excitation,” J. Lumin. 102–103, 819–824 (2003).
[CrossRef]

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008 (2003).
[CrossRef]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Priolo, F.

M. Miritello, P. Cardile, R. L. Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19, 20761–20772 (2011).
[CrossRef]

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Pyne, D. N.

R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987).
[CrossRef]

Ranieri, M.

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987).
[CrossRef]

Sabnis, V. A.

Samejima, T.

H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
[CrossRef]

Sato, T.

T. Sato, T. Nakajima, T. Kimura, and H. Isshiki, “Observation of 30  dB/cm gain in Si photonic crystal slot ErxY2-xSiO5 waveguide,” in Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP 2011) (IEEE, 2011), p. 6053828.

Savio, R. L.

M. Miritello, P. Cardile, R. L. Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19, 20761–20772 (2011).
[CrossRef]

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

Semans, S.

Seo, S.-J.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

Sewell, R.

Shin, J. H.

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18, 7724–7731 (2010).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

Shinagawa, T.

T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.

Shinojima, H.

Shmulovich, J.

Simpson, J. R.

Smith, R.

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Song, Q.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

Song, Y.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

Sorbello, G.

Sugawara, T.

T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.

Suh, K.

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18, 7724–7731 (2010).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

Sung, G. Y.

Tanaka, Y.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013).
[CrossRef]

T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009).
[CrossRef]

H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.

Tang, G.

G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Tawara, T.

H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013).
[CrossRef]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Tsuchizawa, T.

Ueda, H.

T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009).
[CrossRef]

Ushiyama, T.

H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
[CrossRef]

Wada, K.

P. H. Lim, J. Cai, Y. Ishikawa, and K. Wada, “Laterally coupled silicon-germanium modulator for passive waveguide systems,” Opt. Lett. 37, 1496–1498 (2012).
[CrossRef]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

Wang, B.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

Wang, H.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

Wang, L.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

Wang, X. J.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
[CrossRef]

Watanabe, T.

Watson, J.

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932 (1971).
[CrossRef]

Wu, B.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

Xie, B.

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

Yamada, K.

Yang, Z.

G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Yuan, G.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
[CrossRef]

Yuen, H. B.

Zhou, Z.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
[CrossRef]

Adv. Mater. (1)

M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).
[CrossRef]

AIP Adv. (1)

H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013).
[CrossRef]

Ann. Phys. (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55 (1948).
[CrossRef]

Appl. Phys. Lett. (4)

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011).
[CrossRef]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[CrossRef]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004).
[CrossRef]

Electron. Lett. (1)

R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987).
[CrossRef]

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26, 58–66 (2006).
[CrossRef]

IEICE Trans. Electron. (1)

H. Isshiki and T. Kimura, “Toward small size waveguide amplifiers based on erbium silicate for silicon photonics,” IEICE Trans. Electron. E91-C, 138–144 (2008).
[CrossRef]

J. Appl. Phys. (5)

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010).
[CrossRef]

G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008).
[CrossRef]

Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009).
[CrossRef]

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008 (2003).
[CrossRef]

L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009).
[CrossRef]

J. Lumin. (1)

H. Isshiki, A. Polman, and T. Kimura, “Fine structure in the Er-related emission spectrum from Er–Si–O matrices at room temperature under carrier mediated excitation,” J. Lumin. 102–103, 819–824 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013).
[CrossRef]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (1)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996).
[CrossRef]

Phys. E (2)

H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009).
[CrossRef]

T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009).
[CrossRef]

Phys. Rev. B (2)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932 (1971).
[CrossRef]

N. Krasutsky and H. W. Moos, “Energy transfer between the low-lying energy levels of Pr3+ and Nd3+ in LaCl3,” Phys. Rev. B 8, 1010 (1973).
[CrossRef]

Proc. IEEE (1)

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Other (5)

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.

H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.

H. C. Berg, Random Walks in Biology (Princeton University, 1993), Chap. 1.

T. Sato, T. Nakajima, T. Kimura, and H. Isshiki, “Observation of 30  dB/cm gain in Si photonic crystal slot ErxY2-xSiO5 waveguide,” in Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP 2011) (IEEE, 2011), p. 6053828.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

PL spectra of ErxY2xSiO5 crystalline thin films prepared by sol–gel and PLD methods at 17 K.

Fig. 2.
Fig. 2.

TEM image of highly oriented Er2SiO5 crystal.

Fig. 3.
Fig. 3.

XRD patterns of ErxY2xSiO5 PLD thin films as a function of Er content x [24].

Fig. 4.
Fig. 4.

XRD patterns of ErxY2xSiO5 and ErxYbyY2xySiO5 PLD thin films (x=0.33, y=0.33).

Fig. 5.
Fig. 5.

XRD patterns of ErxY2xSiO5 RAS thin films annealed at 1200°C and 1250°C.

Fig. 6.
Fig. 6.

PL emission of ErxY2xSiO5 and ErxYbyY2xySiO5 thin films excited by 654.5 nm light at room temperature. They show (a) I413/2I415/2 transitions of Er3+ and (b) PL emission in the range from 950 to 1100 nm.

Fig. 7.
Fig. 7.

PL intensity ratio of ErxYbyY2xySiO5 and ErxY2xSiO5 crystalline thin films at 1.53 μm, as a function of the excitation wavelength. The dashed lines show PL spectra of both samples for comparison.

Fig. 8.
Fig. 8.

1.53 μm emission decay rate as a function of the Er concentration. The solid lines show the fitting curves by Eq. (5).

Fig. 9.
Fig. 9.

Schematic diagram of the spherical grain model. Density plots show distribution of the excited Er ions at the steady state.

Fig. 10.
Fig. 10.

CUC emission spectra of the sol–gel sample. The energy diagram and CUC energy transfer process are also shown.

Fig. 11.
Fig. 11.

CUC process modeling of the ErxY2xSiO5 crystal.

Fig. 12.
Fig. 12.

CUC emission intensity as a function of excitation power. The solid line is a calculation result using the rate equation [Eq. (6)] with Cup=1×1017cm3s1.

Fig. 13.
Fig. 13.

Summary plots of the CUC coefficients as a function of Er concentration for various host materials [13,29,3436]. The dashed line shows the linear dependence expected from the Förster energy transfer.

Fig. 14.
Fig. 14.

Schematic diagram of the waveguide with buried Si guide layer.

Fig. 15.
Fig. 15.

Top views of the ErxY2xSiO5 (x=0.45) waveguide prepared by DSA (top). CUC emission image along the waveguide (middle) and the CUC emission intensity profile (bottom) are also shown.

Fig. 16.
Fig. 16.

Decay coefficient as a function of Er concentration. The solid line is the linear approximation of a series of the sol–gel samples.

Fig. 17.
Fig. 17.

Schematic diagram of ErxY2xSiO5 waveguide slotted into Si PhC. (a) SEM photograph of a top view of the PhC before the sol–gel process, (b) cross-sectional view of the waveguide device, and (c) SEM image after the crystallization. The light propagation direction is perpendicular to the diagram.

Fig. 18.
Fig. 18.

Top views of the Si PhC–S Er0.4Y1.6SiO5 waveguide. Infrared camera (middle) and CUC emission image along the waveguide (bottom) are also shown.

Fig. 19.
Fig. 19.

(a) PL spectra and the edge emission intensity versus (b) exposed length from the Si PhC–S Er0.4Y1.6SiO5 waveguide.

Fig. 20.
Fig. 20.

Gain characteristics of Si PhC–S Er0.4Y1.6SiO5 waveguide estimated by VSL method.

Tables (1)

Tables Icon

Table 1. Parameters Used in the Rate Equation Modeling of the ErxY2xSiO5 Crystal

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

G[dB]=4.34(σemN1σabsN0)ΓL,
ωT=ω0(R0δ)6=ω0R06N2=CN2,
D=ωTδ2=CN4/3,
τD1=DLD2=CN4/3LD2.
τf1=τ01+τD1τ01(1+16R06N4/3rg2).
[dN1dt=ϕPσabsN0+ω21N2+ω31N3ωfN12CupN12CupN1N2,dN2dt=CupN12ω2N2CupN1N2,dN3dt=CupN1N2ω3N3,NEr=N0+N1+N2+N3,
ϕ=ϕ0exp(αΓx),
ICUCgreenϕk=ϕ0kexp(kαΓx),
α=σabsNEr+αs.
I(L)=0Li0exp(βx)dx=i0β(exp(βL)1).

Metrics