Abstract

We describe a polarization rotator based on a parallel-core structure consisting of a silicon nanowire waveguide and a silicon-nitride waveguide. The 60-μm-long rotator provides a polarization extinction ratio of more than 10 dB with excess loss of less than 1 dB. In addition, the extremely wide bandwidth of more than 150 nm expected from calculations is confirmed in experiments. A study of the fabrication tolerance of our rotator indicates that fabrication error of around 25 nm is allowable.

© 2014 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Polarization rotator based on silicon wire waveguides

Hiroshi Fukuda, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, and Sei-ichi Itabashi
Opt. Express 16(4) 2628-2635 (2008)

Ultrasmall polarization splitter based on silicon wire waveguides

Hiroshi Fukuda, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, and Sei-ichi Itabashi
Opt. Express 14(25) 12401-12408 (2006)

Silicon photonic circuit with polarization diversity

Hiroshi Fukuda, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, and Sei-ichi Itabashi
Opt. Express 16(7) 4872-4880 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Vivian and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2013).
  2. Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express 20, B256–B263 (2012).
    [Crossref]
  3. http://www.mellanox.com/ .
  4. http://www.luxtera.com/ .
  5. Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
    [Crossref]
  6. W. Bogaerts, D. Taillaert, P. Dumon, D. V. Thourhout, and R. Baets, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
    [Crossref]
  7. F. V. Laere, W. Bogaerts, P. Dumon, G. Roalkens, D. V. Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009).
    [Crossref]
  8. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
    [Crossref]
  9. L. Chen, C. R. Doerr, and Y. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36, 469–471 (2011).
    [Crossref]
  10. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [Crossref]
  11. Y. Ding, H. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38, 1227–1229 (2013).
    [Crossref]
  12. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012).
    [Crossref]
  13. G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, “Ultra-short silicon-on-insulator (SOI) polarization rotator between a slot and a strip waveguide based on a nonlinear raised cosine flat-tip taper,” Opt. Express 21, 14888–14894 (2013).
    [Crossref]
  14. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20, 25345–25355 (2012).
    [Crossref]
  15. M. H. El Sherif, O. S. Ahmed, M. H. Bakr, and M. A. Swillam, “Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire,” Opt. Express 20, 12473–12486 (2012).
    [Crossref]
  16. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
    [Crossref]

2013 (3)

2012 (4)

2011 (2)

2009 (1)

2008 (1)

2007 (1)

2005 (1)

Ahmed, O. S.

Akagawa, T.

Akiyama, S.

Arakawa, Y.

Baba, T.

Baets, R.

Bakr, M. H.

Bogaerts, W.

Bowers, J. E.

Chee, J.

Chen, G.

Chen, L.

Chen, Q. Y.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Chen, Y.

Dai, D.

Ding, W.

Ding, Y.

Doerr, C. R.

Dumon, P.

El Sherif, M. H.

Fang, Z.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Feng, R.

Fujikata, J.

Fukuda, H.

Hatori, N.

Haus, H. A.

Hirayama, N.

Horikawa, T.

Imai, M.

Ippen, E. P.

Ishizaka, M.

Itabashi, S.

Laere, F. V.

Liu, L.

Lo, G. Q.

Miura, M.

Mori, M.

Nakamura, T.

Noguchi, M.

Noguchi, Y.

Okamoto, D.

Okano, M.

Okayama, H.

Ou, H.

Pavesi, L.

L. Vivian and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2013).

Peucheret, C.

Roalkens, G.

Saito, E.

Saitou, S.

Shimizu, T.

Shimura, D.

Shinojima, H.

Sun, F.

Swillam, M. A.

Taillaert, D.

Takahashi, H.

Takahashi, M.

Thourhout, D. V.

Tsuchizawa, T.

Urino, Y.

Usuki, T.

Vivian, L.

L. Vivian and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2013).

Watanabe, T.

Watts, M. R.

Yaegashi, H.

Yamada, K.

Yamagishi, M.

Yamamoto, T.

Zhao, C. Z.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Zhu, S.

J. Lightwave Technol. (1)

Opt. Express (8)

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref]

Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express 20, B256–B263 (2012).
[Crossref]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012).
[Crossref]

G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, “Ultra-short silicon-on-insulator (SOI) polarization rotator between a slot and a strip waveguide based on a nonlinear raised cosine flat-tip taper,” Opt. Express 21, 14888–14894 (2013).
[Crossref]

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20, 25345–25355 (2012).
[Crossref]

M. H. El Sherif, O. S. Ahmed, M. H. Bakr, and M. A. Swillam, “Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire,” Opt. Express 20, 12473–12486 (2012).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16, 2628–2635 (2008).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. V. Thourhout, and R. Baets, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15, 1567–1578 (2007).
[Crossref]

Opt. Laser Technol. (1)

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Opt. Lett. (3)

Other (3)

L. Vivian and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2013).

http://www.mellanox.com/ .

http://www.luxtera.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Cross-sectional view of double-core rotator.
Fig. 2.
Fig. 2. Transmission spectra of double-core rotator. (a) Normalized by transmission of normal Si wire waveguide. (b) Normalized by transmission of a fiber.
Fig. 3.
Fig. 3. Calculated transmission spectra of the double-core rotator with various refractive indices of overcladding.
Fig. 4.
Fig. 4. Calculated bending loss of the Si waveguide with 400nm×200nm core for the bending radius of 5 μm as a function of the refractive index of overcladding.
Fig. 5.
Fig. 5. Cross-sectional view of the parallel-core rotator.
Fig. 6.
Fig. 6. Eigenmodes of the parallel-core structure.
Fig. 7.
Fig. 7. Schematic top view of the parallel-core rotator.
Fig. 8.
Fig. 8. Transmission spectra of the parallel-core rotator. (a) Normalized by transmission of normal Si wire waveguide. (b) Normalized by transmission of a fiber.
Fig. 9.
Fig. 9. Calculated transmittance of the parallel-core rotator with various spacer widths.
Fig. 10.
Fig. 10. Transmission spectra of the parallel-core rotator. (a) Spacer width, 50 nm. (b) Spacer width, 100 nm. (c) Spacer width, 150 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ=πLΔnλ,
Lπ/2=λ2Δn.
Δλ=λ2(ngTEngTM)L,

Metrics