Abstract

A novel athermal scheme utilizing resonance splitting of a dual-ring structure is proposed. Detailed design and simulation are presented, and a proof of concept structure is optimized to demonstrate an athermal resonator with resonance wavelength variation lower than 5pm/K within 30 K temperature range.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [CrossRef]
  2. H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112–191113 (2009).
    [CrossRef]
  3. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
  4. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012).
    [CrossRef]
  5. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Z. Feng, X. Z. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [CrossRef]
  6. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.
  7. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
    [CrossRef]
  8. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
    [CrossRef]
  9. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, and G. Morthier, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
    [CrossRef]
  10. J. Lee, D. Kim, G. Kim, O. Kwon, K. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652 (2008).
    [CrossRef]
  11. J. Lee, D. Kim, H. Ahn, S. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25, 2236–2243 (2007).
    [CrossRef]
  12. H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Electron. 47, 354–358 (2011).
    [CrossRef]
  13. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).
    [CrossRef]
  14. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253–2255 (2012).
    [CrossRef]
  15. J. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
    [CrossRef]
  16. H. Yi, D. S. Citrin, and Z. Zhou, “Coupling-induced high-sensitivity silicon microring intensity-based sensor,” J. Opt. Soc. Am. B 28, 1611–1615 (2011).
    [CrossRef]
  17. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
    [CrossRef]

2013

2012

2011

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Electron. 47, 354–358 (2011).
[CrossRef]

H. Yi, D. S. Citrin, and Z. Zhou, “Coupling-induced high-sensitivity silicon microring intensity-based sensor,” J. Opt. Soc. Am. B 28, 1611–1615 (2011).
[CrossRef]

2010

2009

2008

J. Lee, D. Kim, G. Kim, O. Kwon, K. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652 (2008).
[CrossRef]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[CrossRef]

2007

2004

2000

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Absil, P. P.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Ahn, H.

Asghari, M.

Bergman, K.

Bogaerts, W.

Cardenas, J.

Chan, J.

Chen, L.

Chen, Y.

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112–191113 (2009).
[CrossRef]

Citrin, D. S.

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Electron. 47, 354–358 (2011).
[CrossRef]

H. Yi, D. S. Citrin, and Z. Zhou, “Coupling-induced high-sensitivity silicon microring intensity-based sensor,” J. Opt. Soc. Am. B 28, 1611–1615 (2011).
[CrossRef]

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112–191113 (2009).
[CrossRef]

DeRose, C. T.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

Dong, P.

Dumon, P.

Feng, D. Z.

Feng, N. N.

Guha, B.

Han, X.

Ho, P. T.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Hryniewicz, J. V.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Huang, Y.

Jian, X.

Kim, D.

Kim, G.

Kim, K.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[CrossRef]

Krishnamoorthy, A. V.

Kwon, O.

Kyotoku, B. B. C.

Lee, J.

Liang, H.

Lipson, M.

Little, B. E.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

Michel, J.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[CrossRef]

Mookherjea, S.

Morthier, G.

Nielson, G. N.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Padmaraju, K.

Paloczi, G. T.

Park, S.

Poon, J.

Preston, K.

Qian, W.

Scheuer, J.

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Shafiiha, R.

Teng, J.

Trotter, D. C.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

Wilson, R. A.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Yariv, A.

Ye, W. N.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[CrossRef]

Yi, H.

H. Yi, D. S. Citrin, and Z. Zhou, “Coupling-induced high-sensitivity silicon microring intensity-based sensor,” J. Opt. Soc. Am. B 28, 1611–1615 (2011).
[CrossRef]

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Electron. 47, 354–358 (2011).
[CrossRef]

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112–191113 (2009).
[CrossRef]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

Zhang, H.

Zhao, M.

Zheng, X. Z.

Zhou, Z.

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Electron. 47, 354–358 (2011).
[CrossRef]

H. Yi, D. S. Citrin, and Z. Zhou, “Coupling-induced high-sensitivity silicon microring intensity-based sensor,” J. Opt. Soc. Am. B 28, 1611–1615 (2011).
[CrossRef]

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112–191113 (2009).
[CrossRef]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Appl. Phys. Lett.

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112–191113 (2009).
[CrossRef]

IEEE J. Quantum Electron.

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Electron. 47, 354–358 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000).
[CrossRef]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of proposed structure. Inset, ridge waveguide cross-section view; BOX, buried oxide layer; L, coupling length; κ(κ0), coupling coefficient; r(r0), self-coupling coefficient.

Fig. 2.
Fig. 2.

(a) Resonance splitting in dual-ring structure. (b) Resonance wavelength detuning at different ring-to-ring coupling coefficient. λ0 is the central wavelength, representing resonance wavelength at κ=0; λ is the resonance wavelength; FSR stands for free spectral range. (c) dλ/dκ with respect to coupling coefficient, approximately constant in a wide range of κ=00.7.

Fig. 3.
Fig. 3.

Numerical analysis of (a) energy flux density (Pz) and (b) field Hy distribution in DC.

Fig. 4.
Fig. 4.

(a) Relations of coupling coefficient κ and (b) temperature sensitivity of coupling coefficient (dκ/dT) versus coupling length at different temperature. Dots, simulation results; line, fitting curve based on coupled mode theory.

Fig. 5.
Fig. 5.

Transmission spectra (a) without and (b) with resonance splitting.

Fig. 6.
Fig. 6.

Relations of blue shift (blue line and dots) and resonance wavelength shift (red line and crosses) versus temperature. λ0 is the resonance wavelength at T=300K, and λ is resonance wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{Tr=|r0t·a·exp(iφ)1t·r0a·exp(iφ)|2t=ra·exp(iφ)1ra·exp(iφ),
κ=sin(k0·L),
dκdT=dk0dT·L·cos(k0·L).
dλdT=dλsplitdT+dλTOCdT=dλsplitdκ·dκdT+dλTOCdT=0,

Metrics