Abstract

We present a novel method for engineering ultra-flattened-dispersion photonic crystal fibers with uniform air holes by rotations of inner air-hole rings around the fiber core. By choosing suitable rotation angles of each inner ring, theoretical results show that normal, anomalous, and nearly zero ultra-flattened-dispersion fibers in wide spectra ranges of interest can be obtained alternatively. Moreover, in our dispersion sensitive analysis, these types of fibers are robust to variations from optimal design parameters. The method is suitable for the accurate adjustment of fiber dispersion within a small range, which would be valuable for the fabrication of ultra-flattened-dispersion fibers and also have potential applications in wide-band high-speed optical communication systems.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-sillca single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef]
  2. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000).
    [CrossRef]
  3. A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andrés, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001).
    [CrossRef]
  4. Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
    [CrossRef]
  5. S. Lou, H. Fang, H. Li, T. Guo, L. Yao, L. Wang, W. Chen, and S. Jian, “Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber,” Chin. Opt. Lett. 6, 821–823 (2008).
    [CrossRef]
  6. T. L. Wu and C. H. Chao, “A novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67–69 (2005).
  7. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).
  8. J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169–172 (2006).
    [CrossRef]
  9. S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C.-S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20, 1385–1391 (2012).
    [CrossRef]
  10. N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
    [CrossRef]
  11. K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14, 6870–6878 (2006).
    [CrossRef]
  12. K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003).
    [CrossRef]
  13. N. Florous, K. Saitoh, and M. Koshiba, “The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms,” Opt. Express 14, 901–913 (2006).
    [CrossRef]
  14. J. Park, S. Lee, S. Lee, S. E. Kim, and K. Oh, “Dispersion control in square lattice photonic crystal fiber using hollow ring defects,” Opt. Express 20, 5281–5290 (2012).
    [CrossRef]
  15. S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175 (2003).
    [CrossRef]
  16. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728–3736 (2005).
    [CrossRef]

2012 (2)

2008 (2)

S. Lou, H. Fang, H. Li, T. Guo, L. Yao, L. Wang, W. Chen, and S. Jian, “Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber,” Chin. Opt. Lett. 6, 821–823 (2008).
[CrossRef]

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

2006 (3)

2005 (2)

2004 (2)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
[CrossRef]

2003 (2)

2001 (1)

2000 (1)

1996 (1)

Albin, S.

Andres, P.

Andrés, M. V.

Andrés, P.

Atkin, D. M.

Begum, F.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Birks, T. A.

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).

Broderick, N. G. R.

Chao, C. H.

T. L. Wu and C. H. Chao, “A novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67–69 (2005).

Chen, W.

Cucinotta, A.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).

Fang, H.

Ferrando, A.

Finazzi, V.

Florous, N.

Gao, M.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169–172 (2006).
[CrossRef]

Gundu, K. M.

Guo, S.

Guo, T.

Hai, N. H.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Hansen, K. P.

Ho, H. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
[CrossRef]

Hu, W.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169–172 (2006).
[CrossRef]

Jian, S.

Jiang, C.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169–172 (2006).
[CrossRef]

Jin, W.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
[CrossRef]

Ju, J.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
[CrossRef]

Kaijage, S. F.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Kee, C.-S.

Kim, B. H.

Kim, S. E.

Kinjo, T.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Knight, J. C.

Kolesik, M.

Koshiba, M.

Lee, C. G.

Lee, K. S.

Lee, S.

Li, H.

Lou, S.

Miret, J. J.

Moloney, J. V.

Monro, T. M.

Namihira, Y.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Oh, K.

Park, J.

Poletti, F.

Poli, F.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).

Razzak, S. M. A.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Richardson, D. J.

Russell, P. St. J.

Saitoh, K.

Selleri, S.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).

Silvestre, E.

Tse, V.

Wang, D. N.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
[CrossRef]

Wang, J.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169–172 (2006).
[CrossRef]

Wang, L.

Wu, T. L.

T. L. Wu and C. H. Chao, “A novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67–69 (2005).

Yao, L.

Zou, N.

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (2)

T. L. Wu and C. H. Chao, “A novel ultraflattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67–69 (2005).

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).

Opt. Commun. (1)

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327–332 (2004).
[CrossRef]

Opt. Express (8)

S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C.-S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20, 1385–1391 (2012).
[CrossRef]

J. Park, S. Lee, S. Lee, S. E. Kim, and K. Oh, “Dispersion control in square lattice photonic crystal fiber using hollow ring defects,” Opt. Express 20, 5281–5290 (2012).
[CrossRef]

A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andrés, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001).
[CrossRef]

S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175 (2003).
[CrossRef]

K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003).
[CrossRef]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728–3736 (2005).
[CrossRef]

N. Florous, K. Saitoh, and M. Koshiba, “The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms,” Opt. Express 14, 901–913 (2006).
[CrossRef]

K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14, 6870–6878 (2006).
[CrossRef]

Opt. Laser Technol. (1)

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169–172 (2006).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

N. H. Hai, Y. Namihira, S. F. Kaijage, T. Kinjo, F. Begum, S. M. A. Rzzzak, and N. Zou, “A unique approach in ultra-flattened dispersion photonic crystal fibers containing elliptical air-holes,” Opt. Rev. 15, 91–96 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic topology of the proposed PCFs structure. The air holes in the silica background are arranged in a triangular configuration of lattice constant Λ with the central air hole missing, and all air holes have a uniform diameter d. The first and second innermost air-hole rings (colored green and yellow, respectively) are rotated around the fiber core with angles of α degrees and β degrees relative to their original positions, respectively. And the original positions of air holes in the inner rings are denoted as dashed circles in the right panel.

Fig. 2.
Fig. 2.

Chromatic dispersion D as a function of wavelength λ with Λ=2.3μm and d=0.61μm for changing one of the design parameters: (a) α is changing from 0° to 30°, while β is fixed, and (b) β is changing from 0° to 30°, while α is fixed.

Fig. 3.
Fig. 3.

Fundamental mode transverse electric field intensity (Et2) distributions at 1.45 μm (upper figures) and 1.75 μm (lower figures) wavelengths, for nearly zero-dispersion flattened PCFs with Λ=2.3μm and d=0.61μm for (a) α=0° and β=0°, (b) α=30° and β=0°, (c) α=0° and β=30°, (d) α=0° and β=0°, (e) α=30° and β=0°, and (f) α=0° and β=30°.

Fig. 4.
Fig. 4.

Chromatic dispersion D as a function of wavelength λ with Λ=2.3μm and d=0.61μm for changing α from 0° to 59°, while β has an optimized value of 20°.

Fig. 5.
Fig. 5.

Chromatic dispersion D as a function of the wavelength λ, for changing structure parameters α or β from 0° to 30° while reserving the other parameters, for (a) normal ultra-flattened-dispersion PCF with Λ=2.7μm and d=0.75μm, and (b) abnormal ultra-flattened-dispersion PCF with Λ=2.2μm and d=0.54μm.

Fig. 6.
Fig. 6.

Chromatic dispersion as a function of the wavelength λ, for the changing α (a) normal ultra-flattened-dispersion PCF with β=16°, Λ=2.7μm, and d=0.75μm, and (b) abnormal ultra-flattened-dispersion PCF with β=22°, Λ=2.2μm, and d=0.54μm.

Fig. 7.
Fig. 7.

Chromatic dispersion D as a function of the wavelength λ with Λ=2.3μm and d=0.61μm; α or/ and β are varied from their optimum values of α=0° and β=20°.

Tables (1)

Tables Icon

Table 1. Effective Mode Areas at λ=1.55μm for Different Parameters with Λ=2.3μm and d=0.61μm

Metrics