Abstract

The polarization behavior of elastic scattering at 1473 nm is analyzed from a silicon microsphere on an optical fiber half-coupler. The 0.27 nm angular mode spacing of the resonances correlates well with the optical size of the silicon sphere. The spectral linewidths of the resonances are on the order of 103nm, which corresponds to quality factors on the order of 106. The transverse magnetically polarized elastic scattering signal has higher resonance to modulation depth and background ratio than the transverse electrically polarized elastic scattering signal and is suitable for high-resolution optical filtering applications such as optical monitoring and sensing.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
    [CrossRef]
  2. B. Charbonnier, S. Menezo, P. O’Brien, A. Lebreton, J. M. Fedeli, and B. Ben Bakir, “Silicon photonics for next generation FDM/FDMA PON,” J. Opt. Commun. Netw. 4, A29–A37 (2012).
    [CrossRef]
  3. E. Kasper, M. Kittler, M. Oehme, and T. Arguirov, “Germanium tin: silicon photonics toward the mid-infrared,” Photon. Res. 1, 69–76 (2013).
    [CrossRef]
  4. A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
    [CrossRef]
  5. Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
    [CrossRef]
  6. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [CrossRef]
  7. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuzo, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
    [CrossRef]
  8. C.-F. Lin, S.-C. Hung, S.-C. Shiu, and H.-J. Syu, “Si micro and nano-structures for communication and energy applications,” Proc. SPIE 8564, 85640R (2012).
    [CrossRef]
  9. A. Serpengüzel and A. W. Poon, eds., Optical Processes in Microparticles and Nanostructures: A Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (World Scientific, 2011).
  10. T. Bilici, S. Isçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004).
    [CrossRef]
  11. X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
    [CrossRef]
  12. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
    [CrossRef]
  13. L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
    [CrossRef]
  14. A. Demir, E. Yüce, A. Serpengüzel, and J. A. Lock, “Geometrically enhanced morphology dependent resonances of a dielectric sphere,” Appl. Opt. 50, 6652–6656 (2011).
    [CrossRef]
  15. H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, “Optimal sizes of silica microspheres for linear and nonlinear optical interactions,” Appl. Phys. B 83, 303–309 (2006).
    [CrossRef]
  16. Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
    [CrossRef]
  17. K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
    [CrossRef]
  18. C. Sang-Yeon, G. Dobbs, N. M. Jokerst, B. Mizaikoff, and T. Cooper, “Optical microring resonator sensors with selective membrane surface customization,” in Proceedings of the Conference on Lasers and Electrooptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007, Technical Digest (OSA, 2007), paper CWE4.
  19. U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
    [CrossRef]
  20. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
    [CrossRef]
  21. Y. O. Yılmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005).
    [CrossRef]
  22. E. Xifré-Pérez, J. Domenech, R. Fenollosa, P. Muñoz, J. Capmany, and F. Meseguer, “All silicon waveguide spherical microcavity coupler device,” Opt. Express 19, 3185–3192 (2011).
    [CrossRef]
  23. X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
    [CrossRef]
  24. P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37, 728–730 (2012).
    [CrossRef]
  25. E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009).
    [CrossRef]
  26. H. Yılmaz and A. Serpengüzel, “Electro-optical modulation with silicon microspheres in liquid crystal,” Proc. SPIE 8069, 80690L (2011).
    [CrossRef]
  27. A. Y. Smirnov, S. N. Rashkeev, and A. M. Zagoskin, “Polarization switching in optical microsphere resonator,” Appl. Phys. Lett. 80, 3503–3505 (2002).
    [CrossRef]
  28. G. Guan and F. Vollmer, “Polarized transmission spectra of the fiber–microsphere system,” Appl. Phys. Lett. 86, 121115–121117 (2005).
    [CrossRef]
  29. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber–microsphere system,” Appl. Phys. Lett. 89, 121107–121109 (2006).
    [CrossRef]
  30. S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
    [CrossRef]
  31. P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
    [CrossRef]
  32. S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1998), pp. 3–61.
  33. S. Arnold, “Microspheres, photonic atoms and the physics of nothing,” Am. Scientist 89, 414–421 (2001).
  34. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. A 69, 1068–1079 (1979).
    [CrossRef]
  35. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef]
  36. G. Chen, M. M. Mazumder, Y. Chemla, A. Serpengüzel, R. Chang, and S. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
    [CrossRef]
  37. W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge University, 2000).
  38. O. Parriaux, S. Gidon, and A. A. Kuznetsov, “Distributed coupling on polished single-mode optical fibers,” Appl. Opt. 20, 2420–2423 (1981).
    [CrossRef]
  39. W. R. McKee, “Development of the spherical silicon solar cell,” IEEE Trans. Comp. Hybrids Manufact. Technol. 5, 336–341 (1982).
    [CrossRef]
  40. N. Takeda, “Spherical silicon 1 mm device and its clustering,” in Proceedings of the IEEE International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (IEEE, 2001), pp. 86–91.
  41. A. Serpengüzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14, 790–795 (1997).
    [CrossRef]

2013

2012

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

B. Charbonnier, S. Menezo, P. O’Brien, A. Lebreton, J. M. Fedeli, and B. Ben Bakir, “Silicon photonics for next generation FDM/FDMA PON,” J. Opt. Commun. Netw. 4, A29–A37 (2012).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

C.-F. Lin, S.-C. Hung, S.-C. Shiu, and H.-J. Syu, “Si micro and nano-structures for communication and energy applications,” Proc. SPIE 8564, 85640R (2012).
[CrossRef]

P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Opt. Lett. 37, 728–730 (2012).
[CrossRef]

2011

E. Xifré-Pérez, J. Domenech, R. Fenollosa, P. Muñoz, J. Capmany, and F. Meseguer, “All silicon waveguide spherical microcavity coupler device,” Opt. Express 19, 3185–3192 (2011).
[CrossRef]

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

H. Yılmaz and A. Serpengüzel, “Electro-optical modulation with silicon microspheres in liquid crystal,” Proc. SPIE 8069, 80690L (2011).
[CrossRef]

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[CrossRef]

A. Demir, E. Yüce, A. Serpengüzel, and J. A. Lock, “Geometrically enhanced morphology dependent resonances of a dielectric sphere,” Appl. Opt. 50, 6652–6656 (2011).
[CrossRef]

2009

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
[CrossRef]

E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009).
[CrossRef]

2008

2006

H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, “Optimal sizes of silica microspheres for linear and nonlinear optical interactions,” Appl. Phys. B 83, 303–309 (2006).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber–microsphere system,” Appl. Phys. Lett. 89, 121107–121109 (2006).
[CrossRef]

2005

G. Guan and F. Vollmer, “Polarized transmission spectra of the fiber–microsphere system,” Appl. Phys. Lett. 86, 121115–121117 (2005).
[CrossRef]

Y. O. Yılmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005).
[CrossRef]

2004

T. Bilici, S. Isçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004).
[CrossRef]

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

2003

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

2002

A. Y. Smirnov, S. N. Rashkeev, and A. M. Zagoskin, “Polarization switching in optical microsphere resonator,” Appl. Phys. Lett. 80, 3503–3505 (2002).
[CrossRef]

2001

S. Arnold, “Microspheres, photonic atoms and the physics of nothing,” Am. Scientist 89, 414–421 (2001).

2000

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

1997

1993

1990

1982

W. R. McKee, “Development of the spherical silicon solar cell,” IEEE Trans. Comp. Hybrids Manufact. Technol. 5, 336–341 (1982).
[CrossRef]

1981

1979

H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. A 69, 1068–1079 (1979).
[CrossRef]

Abstreiter, G.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Agha, H.

H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, “Optimal sizes of silica microspheres for linear and nonlinear optical interactions,” Appl. Phys. B 83, 303–309 (2006).
[CrossRef]

Anikeyev, V.

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Arakawa, Y.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Arguirov, T.

Arnold, S.

Artemyev, M. V.

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Assefa, S.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Ballato, J.

Ben Bakir, B.

Benner, R. E.

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1998), pp. 3–61.

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[CrossRef]

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Bilici, T.

T. Bilici, S. Isçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Bougeard, D.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Brambilla, G.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Capmany, J.

Chang, R.

Charbonnier, B.

Chemla, Y.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Chen, G.

Chen, Y.

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
[CrossRef]

Cheng, Z.

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

Chu, T.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Chylek, P.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Cooper, T.

C. Sang-Yeon, G. Dobbs, N. M. Jokerst, B. Mizaikoff, and T. Cooper, “Optical microring resonator sensors with selective membrane surface customization,” in Proceedings of the Conference on Lasers and Electrooptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007, Technical Digest (OSA, 2007), paper CWE4.

Dai, D.

L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
[CrossRef]

Daw, M.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

de S. Menezes, L.

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Demir, A.

A. Demir, E. Yüce, A. Serpengüzel, and J. A. Lock, “Geometrically enhanced morphology dependent resonances of a dielectric sphere,” Appl. Opt. 50, 6652–6656 (2011).
[CrossRef]

Y. O. Yılmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005).
[CrossRef]

Dhar, A.

Ding, M.

Doany, F. E.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Dobbs, G.

C. Sang-Yeon, G. Dobbs, N. M. Jokerst, B. Mizaikoff, and T. Cooper, “Optical microring resonator sensors with selective membrane surface customization,” in Proceedings of the Conference on Lasers and Electrooptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007, Technical Digest (OSA, 2007), paper CWE4.

Domenech, J.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Ellison, M.

Farrell, G.

Fedeli, J. M.

Feng, P. X.-L.

Fenollosa, R.

Finley, J. J.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Foster, M. A.

H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, “Optimal sizes of silica microspheres for linear and nonlinear optical interactions,” Appl. Phys. B 83, 303–309 (2006).
[CrossRef]

Foy, P.

Fu, X.

L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
[CrossRef]

Fujiwara, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber–microsphere system,” Appl. Phys. Lett. 89, 121107–121109 (2006).
[CrossRef]

Gaeta, A. L.

H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, “Optimal sizes of silica microspheres for linear and nonlinear optical interactions,” Appl. Phys. B 83, 303–309 (2006).
[CrossRef]

Gaponik, N.

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

Gidon, S.

Götzinger, S.

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

Grandy, W. T.

W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge University, 2000).

Green, W. M. J.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Griffel, G.

Guan, G.

G. Guan and F. Vollmer, “Polarized transmission spectra of the fiber–microsphere system,” Appl. Phys. Lett. 86, 121115–121117 (2005).
[CrossRef]

Gürlü, O.

E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009).
[CrossRef]

Hauke, N.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Hawkins, T.

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Hill, S.

Hill, S. C.

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1998), pp. 3–61.

Hu, Y.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Hung, S.-C.

C.-F. Lin, S.-C. Hung, S.-C. Shiu, and H.-J. Syu, “Si micro and nano-structures for communication and energy applications,” Proc. SPIE 8564, 85640R (2012).
[CrossRef]

Isçi, S.

T. Bilici, S. Isçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004).
[CrossRef]

Iwamoto, S.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Jahnes, C. V.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Jin, L.

L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
[CrossRef]

Jokerst, N. M.

C. Sang-Yeon, G. Dobbs, N. M. Jokerst, B. Mizaikoff, and T. Cooper, “Optical microring resonator sensors with selective membrane surface customization,” in Proceedings of the Conference on Lasers and Electrooptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007, Technical Digest (OSA, 2007), paper CWE4.

Kaniber, M.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Kash, J. A.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Kasper, E.

Kittler, M.

Koga, K.

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

Kokuzo, B.

Konishi, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber–microsphere system,” Appl. Phys. Lett. 89, 121107–121109 (2006).
[CrossRef]

Koshizaki, N.

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Kurt, A.

Y. O. Yılmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005).
[CrossRef]

T. Bilici, S. Isçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004).
[CrossRef]

Kuznetsov, A. A.

Lebreton, A.

Lee, B. G.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Lee, J. Y.

Lee, T.

Lei, G. K. P.

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

Lethomas, N.

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Li, X.

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

Li, Y.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Li, Z.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
[CrossRef]

Lin, C.-F.

C.-F. Lin, S.-C. Hung, S.-C. Shiu, and H.-J. Syu, “Si micro and nano-structures for communication and energy applications,” Proc. SPIE 8564, 85640R (2012).
[CrossRef]

Lin, Q.

Lo, S. M. G.

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

Lock, J. A.

Lu, X.

Mazumder, M. M.

McKee, W. R.

W. R. McKee, “Development of the spherical silicon solar cell,” IEEE Trans. Comp. Hybrids Manufact. Technol. 5, 336–341 (1982).
[CrossRef]

McMillen, C.

Menezo, S.

Meseguer, F.

Mizaikoff, B.

C. Sang-Yeon, G. Dobbs, N. M. Jokerst, B. Mizaikoff, and T. Cooper, “Optical microring resonator sensors with selective membrane surface customization,” in Proceedings of the Conference on Lasers and Electrooptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007, Technical Digest (OSA, 2007), paper CWE4.

Möller, B.

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Muñoz, P.

Nussenzveig, H. M.

H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. A 69, 1068–1079 (1979).
[CrossRef]

O’Brien, P.

Oehme, M.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Parriaux, O.

Powers, D. R.

Pyatenko, A.

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

Rao, A. M.

Rashkeev, S. N.

A. Y. Smirnov, S. N. Rashkeev, and A. M. Zagoskin, “Polarization switching in optical microsphere resonator,” Appl. Phys. Lett. 80, 3503–3505 (2002).
[CrossRef]

Reichert, T.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Reppert, J.

Rice, R. R.

Rogach, A. L.

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

Rylyakov, A. V.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Sahu, J.

Sandoghdar, V.

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

Sang-Yeon, C.

C. Sang-Yeon, G. Dobbs, N. M. Jokerst, B. Mizaikoff, and T. Cooper, “Optical microring resonator sensors with selective membrane surface customization,” in Proceedings of the Conference on Lasers and Electrooptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007, Technical Digest (OSA, 2007), paper CWE4.

Sasaki, K.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber–microsphere system,” Appl. Phys. Lett. 89, 121107–121109 (2006).
[CrossRef]

Schöps, O.

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Schow, C. L.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Semenova, Y.

Serpengüzel, A.

H. Yılmaz and A. Serpengüzel, “Electro-optical modulation with silicon microspheres in liquid crystal,” Proc. SPIE 8069, 80690L (2011).
[CrossRef]

A. Demir, E. Yüce, A. Serpengüzel, and J. A. Lock, “Geometrically enhanced morphology dependent resonances of a dielectric sphere,” Appl. Opt. 50, 6652–6656 (2011).
[CrossRef]

E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009).
[CrossRef]

Y. O. Yılmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005).
[CrossRef]

T. Bilici, S. Isçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004).
[CrossRef]

A. Serpengüzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14, 790–795 (1997).
[CrossRef]

G. Chen, M. M. Mazumder, Y. Chemla, A. Serpengüzel, R. Chang, and S. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
[CrossRef]

Sharma, S.

Sharping, J. E.

H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, “Optimal sizes of silica microspheres for linear and nonlinear optical interactions,” Appl. Phys. B 83, 303–309 (2006).
[CrossRef]

Shi, Y.

L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
[CrossRef]

Shimizu, Y.

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

Shiu, S.-C.

C.-F. Lin, S.-C. Hung, S.-C. Shiu, and H.-J. Syu, “Si micro and nano-structures for communication and energy applications,” Proc. SPIE 8564, 85640R (2012).
[CrossRef]

Shori, R.

Shu, C.

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

Smirnov, A. Y.

A. Y. Smirnov, S. N. Rashkeev, and A. M. Zagoskin, “Polarization switching in optical microsphere resonator,” Appl. Phys. Lett. 80, 3503–3505 (2002).
[CrossRef]

Stafsudd, O.

Stolen, R.

Su, Y.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Syu, H.-J.

C.-F. Lin, S.-C. Hung, S.-C. Shiu, and H.-J. Syu, “Si micro and nano-structures for communication and energy applications,” Proc. SPIE 8564, 85640R (2012).
[CrossRef]

Takagi, H.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Takeda, N.

N. Takeda, “Spherical silicon 1 mm device and its clustering,” in Proceedings of the IEEE International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (IEEE, 2001), pp. 86–91.

Takeuchi, S.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber–microsphere system,” Appl. Phys. Lett. 89, 121107–121109 (2006).
[CrossRef]

Talapin, D. V.

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

Tandaechanurat, A.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Tsang, H. K.

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Van Campenhout, J.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Vlasov, Y. A.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Vollmer, F.

G. Guan and F. Vollmer, “Polarized transmission spectra of the fiber–microsphere system,” Appl. Phys. Lett. 86, 121115–121117 (2005).
[CrossRef]

Wang, H.

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

Wang, J.

L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
[CrossRef]

Wang, P.

Wannemacher, R.

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[CrossRef]

Weller, H.

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

Woggon, U.

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Wu, Q.

Xiao, X.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Xifré-Pérez, E.

Xu, K.

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

Yang, B.

L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Yang, M.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

Yi, H.

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
[CrossRef]

Yilmaz, H.

H. Yılmaz and A. Serpengüzel, “Electro-optical modulation with silicon microspheres in liquid crystal,” Proc. SPIE 8069, 80690L (2011).
[CrossRef]

Yilmaz, Y. O.

Y. O. Yılmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005).
[CrossRef]

Yu, J.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
[CrossRef]

Yu, Y.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Yüce, E.

A. Demir, E. Yüce, A. Serpengüzel, and J. A. Lock, “Geometrically enhanced morphology dependent resonances of a dielectric sphere,” Appl. Opt. 50, 6652–6656 (2011).
[CrossRef]

E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009).
[CrossRef]

Zabel, T.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Zagoskin, A. M.

A. Y. Smirnov, S. N. Rashkeev, and A. M. Zagoskin, “Polarization switching in optical microsphere resonator,” Appl. Phys. Lett. 80, 3503–3505 (2002).
[CrossRef]

Zhang, L.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

Zhou, Z.

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
[CrossRef]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

Am. Scientist

S. Arnold, “Microspheres, photonic atoms and the physics of nothing,” Am. Scientist 89, 414–421 (2001).

Appl. Opt.

Appl. Phys. B

H. Agha, J. E. Sharping, M. A. Foster, and A. L. Gaeta, “Optimal sizes of silica microspheres for linear and nonlinear optical interactions,” Appl. Phys. B 83, 303–309 (2006).
[CrossRef]

U. Woggon, R. Wannemacher, M. V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, and O. Schöps, “Dot-in-a-dot: electronic and photonic confinement in all three dimensions,” Appl. Phys. B 77, 469–484 (2003).
[CrossRef]

Appl. Phys. Lett.

A. Y. Smirnov, S. N. Rashkeev, and A. M. Zagoskin, “Polarization switching in optical microsphere resonator,” Appl. Phys. Lett. 80, 3503–3505 (2002).
[CrossRef]

G. Guan and F. Vollmer, “Polarized transmission spectra of the fiber–microsphere system,” Appl. Phys. Lett. 86, 121115–121117 (2005).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber–microsphere system,” Appl. Phys. Lett. 89, 121107–121109 (2006).
[CrossRef]

Front. Optoelectron. China

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Front. Optoelectron. China 2, 304–307 (2009).
[CrossRef]

IEEE J. Solid-State Circuits

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Xu, G. K. P. Lei, S. M. G. Lo, Z. Cheng, C. Shu, and H. K. Tsang, “Bit-rate-variable DPSK demodulation using silicon microring resonators with electro-optic wavelength tuning,” IEEE Photon. Technol. Lett. 24, 1221–1223 (2012).
[CrossRef]

T. Bilici, S. Isçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004).
[CrossRef]

L. Jin, J. Wang, X. Fu, B. Yang, Y. Shi, and D. Dai, “High-Q microring resonators with 2 × 2 angled multimode interference couplers,” IEEE Photon. Technol. Lett. 25, 612–614 (2013).
[CrossRef]

Y. O. Yılmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005).
[CrossRef]

E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009).
[CrossRef]

IEEE Trans. Comp. Hybrids Manufact. Technol.

W. R. McKee, “Development of the spherical silicon solar cell,” IEEE Trans. Comp. Hybrids Manufact. Technol. 5, 336–341 (1982).
[CrossRef]

J. Opt.

Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, and J. Yu, “An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators,” J. Opt. 14, 065501 (2012).
[CrossRef]

J. Opt. B

S. Götzinger, L. de S. Menezes, O. Benson, D. V. Talapin, N. Gaponik, H. Weller, A. L. Rogach, and V. Sandoghdar, “Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator,” J. Opt. B 6, 154–158 (2004).
[CrossRef]

J. Opt. Commun. Netw.

J. Opt. Soc. Am. A

P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
[CrossRef]

H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. A 69, 1068–1079 (1979).
[CrossRef]

J. Opt. Soc. Am. B

Langmuir

X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, and N. Koshizaki, “Fabrication of crystalline silicon spheres by selective laser heating in liquid medium,” Langmuir 27, 5076–5080 (2011).
[CrossRef]

Laser Photon. Rev.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[CrossRef]

Nat. Photonics

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[CrossRef]

New J. Phys.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14, 083035 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Res.

Phys. Rev. Lett.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef]

Proc. SPIE

H. Yılmaz and A. Serpengüzel, “Electro-optical modulation with silicon microspheres in liquid crystal,” Proc. SPIE 8069, 80690L (2011).
[CrossRef]

C.-F. Lin, S.-C. Hung, S.-C. Shiu, and H.-J. Syu, “Si micro and nano-structures for communication and energy applications,” Proc. SPIE 8564, 85640R (2012).
[CrossRef]

Other

A. Serpengüzel and A. W. Poon, eds., Optical Processes in Microparticles and Nanostructures: A Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (World Scientific, 2011).

C. Sang-Yeon, G. Dobbs, N. M. Jokerst, B. Mizaikoff, and T. Cooper, “Optical microring resonator sensors with selective membrane surface customization,” in Proceedings of the Conference on Lasers and Electrooptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007, Technical Digest (OSA, 2007), paper CWE4.

W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge University, 2000).

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, 1998), pp. 3–61.

N. Takeda, “Spherical silicon 1 mm device and its clustering,” in Proceedings of the IEEE International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (IEEE, 2001), pp. 86–91.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Free-space and (b) integrated optics depiction of a silicon microsphere with radius a coupled to a single-mode OFHC placed at an impact parameter b, and the elastic scattering due to the WGMs, GS, and SI.

Fig. 2.
Fig. 2.

Illustration of an elastic scattering spectrum from a microsphere indicating the WGMs, the MD, the BG, and the spectral mode spacing (Δλ).

Fig. 3.
Fig. 3.

(a) Schematic of the experimental setup describing the elastic scattering from the silicon microsphere. (b) Picture of the silicon microsphere positioned on the silica OFHC.

Fig. 4.
Fig. 4.

Elastic scattering intensity (a) unpolarized, (b) TE polarized, and (c) TM polarized spectra from a silicon microsphere.

Fig. 5.
Fig. 5.

Single-mode spacing (Δλ) spectral coverage for (a) unpolarized, (b) TE polarized, and (c) TM polarized elastic scattering from a silicon microsphere.

Fig. 6.
Fig. 6.

One-third of mode spacing (Δλ/3) in spectral coverage for (a) unpolarized, (b) TE polarized, and (c) TM polarized elastic scattering from a silicon microsphere.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ2tan1ρ2πaρ,
dN(x)dx=xρ2(ρtan1ρ)π.
dN(λ)dλ=4πa2ρ2(ρtan1ρ)λ3.
ω(m)=ωo{1e6[13m2n(n+1)]},
λ(m)=λo{1+e6[13m2n(n+1)]},
λ(n)=λo{1+e6[13n2n(n+1)]},
λ(0)=λo{1+e6}.
λ(n)λ(0)=λo{e2[n(n+1)]}.
λ(n)λ(0)n=λo{e2[n2n(n+1)]}1n=λoe2(n+1).
Etotal=EWGM+EGS+ESI,
Itotal=cεo2|EWGM+EGS+ESI|2,
Itotal=cεo2|EWGM+EGS+ESI|2
Itotal=cεo2|EWGM+EGS|2
Itotal=IWGM+IGS+ISI+cεo|EWGMEGS*+EWGMESI*+EGSESI*|,
Itotal=IWGM+IGS+cεo|EWGMEGS*|,
Itotal=IWGM+IBG+IMD.

Metrics